
Final Exam Spring 2023

This exam consists of 8 questions. You have 180 minutes – budget your time wisely.
Assume the ArmLab/Linux/gcc217 environment unless otherwise stated in a problem.

Do all of your work on these pages. You may use the provided blank spaces for scratch
space, however this exam is preprocessed by computer, so for your final answers to be
scored you must write them inside the designated spaces and fill in selected circles and
boxes completely (⚫ and⬛, not✔ or✘). Please make text answers dark and neat.

Name: NetID:

Precept:

◯ P01 - MW 1:30
Donna Gabai

◯ P04 TTh 1:30
Wei Luo

◯ P06 TTh 3:30
Ashwini Raina

◯ P02 - MW 3:30
Donna Gabai

◯ P04A TTh 1:30
Samuel Ginzburg

◯ P07 TTh 7:30
Wei Tang

◯ P03 - TTh 12:30
Guðni Nathan Gunnarsson

◯ P05 TTh 2:30
Jianan Lu

This is a closed-book, closed-note exam, except you are allowed one two-sided study
sheet. Please place items that you will not need out of view in your bag or under your
working space at this time. Electronic devices such as cell phones, laptops, music
players, smartwatches except to check the time, etc. may not be used during this exam.

This examination is administered under the Princeton University Honor Code. Students
should sit one seat apart from each other and refrain from talking to other students
during the exam. All suspected violations of the Honor Code must be reported to
honor@princeton.edu.

In the box below, copy and sign the Honor Code pledge before turning in your exam:
“I pledge my honor that I have not violated the Honor Code during this examination.”

Exam statistics:
Mean: 56.8 / 80 (71%)
StdDev: 11.7 / 80
{25th/50th (median)/75th} %ile: { 49 , 58 , 66 } / 80
Max: 78 / 80

X_________________________________

(The exam questions begin on page 3. This page may be used for scratch work,
however any answers given on this page will not be graded.)

Page 2 of 18

Question 1: Snap Twice, Bubble Once 10 points

Identify whether each statement is True or False. Fill in exactly one circle per line.

True False
a. ARM registers have shorter (i.e., faster) latency than RAM ⚫ ◯

b. An ARM ALU instruction may store its result directly to RAM ◯ ⚫
ARM is a load/store architecture: ldr first, then manipulate, then str separately

c. Fixed-length instructions are more typical of RISC than CISC ⚫ ◯

RISC tendencies: {fewer, simpler, fixed-length} instructions; ldr/str paradigm
d. The assembler generates a relocation record for every branch ◯ ⚫

Assembler can build ML itself for branches within the same file’s text section
e. adds w0, w1, wzr is completely equivalent to mov w0, w1 ◯ ⚫

adds sets the PSTATE flags, but mov doesn’t
f. Both spatial and temporal locality concern near-future data access ⚫ ◯

“Access x → access x’s neighbor soon” and “Access x → access x again soon”
g. gprof can identify what function is using most of a program’s time ⚫ ◯

h. main’s initial SP value may be variable to hamper stack smashes ⚫ ◯

Attacks relying on absolute stack addresses are harder if SP differs in each run
i. Using big-endian byte order allows for larger signed long values ◯ ⚫

The range depends on the number of bits and representation, not byte order
j. Machine language is more portable than assembly language ◯ ⚫

Neither is portable, but assembly language is at least not less portable

Question 2: Hyde trailing bits that are always 0 4 points

The machine language instructions for str w1, [x2, imm] and strb w1, [x2, imm]
both use 12 bits to represent the unsigned immediate offset value (imm). The maximum
possible values of these offsets differ by a factor of 4, however, due to assumptions
afforded by alignment guarantees. In the boxes below, give the maximum possible
unsigned offset value, in base 10. You may choose to represent your answer in terms of
a power of 2, e.g., 28 – 39:

str

16380 (214 - 4)
(14: offset is shifted left by 2
bits; -4: must be divisible by 4)

strb

4095 (212 - 1)

Page 3 of 18

Question 3: Redundant Rebuilds Nevermore 12 points

Imagine that A4 has been changed for next semester in the following (dubious) ways:
● Eliminate the Path and DynArray modules
● Require separate modules for file nodes and directory nodes
● Allow the two node modules to see the definitions of the file tree state variables

Consider a proposed set of source code relationships, where arrows indicate #include,
e.g., client.c #includes tree.h:

As with your A4, one requirement is a Makefile to produce the executable ft! Here is
the skeleton of a correct Makefile for the diagram, but it has placeholders for targets
client.o, dirNode.o, fileNode.o, ft, and tree.o, and their dependency lists:

TARGET1: DEPENDENCIES1
gcc217 client.o tree.o dirNode.o fileNode.o -o ft

TARGET2: DEPENDENCIES2
gcc217 -c client.c

TARGET3: DEPENDENCIES3
gcc217 -c tree.c

TARGET4: DEPENDENCIES4
gcc217 -c dirNode.c

TARGET5: DEPENDENCIES5
gcc217 -c fileNode.c

Page 4 of 18

For each of the following items concerning the Makefile’s correctly completed
version – one where each TARGET is replaced by an actual filename and each
DEPENDENCIES is replaced by a list of zero or more filenames – answer in the box to the
right of the question:

a. What file is TARGET1? ft
(based on what comes after -o)

b. How many .c files are listed
in DEPENDENCIES1?

0
(executables depend only on .o files)

c. How many .h files are listed
in DEPENDENCIES1?

0
(executables depend only on .o files)

d. How many .o files are listed
in DEPENDENCIES1?

4
(the ones listed in the gcc217 command)

e. What file is TARGET2? client.o
(gcc217 -c does P/C/A, producing .o)

f. How many .c files are listed
in DEPENDENCIES2?

1
(a .o file is made from only 1 .c file)

g. How many .h files are listed
in DEPENDENCIES2?

1
(tree.h is the only #included file)

h. How many .o files are listed
in DEPENDENCIES2?

0
(.o files depend only on .c/.h files)

i. What file is TARGET3? tree.o

j. How many .h files are listed
in DEPENDENCIES3?

5
(4 tree.c #included, node.h indirectly)

k. What file is TARGET4? dirNode.o

l. What file is TARGET5? fileNode.o

Page 5 of 18

(The exam questions continue on page 7. This page may be used for scratch work,
however any answers given on this page will not be graded.)

Page 6 of 18

Question 4: addams Family 5 points

Consider the following pattern for 3-register ALU instructions in ARM:

Here are the full sets of red opgroup+opcode bits (bits 30, 28-24) that span both sides
of the aqua s bit (bit 29) for some specific instructions that follow this pattern:

adc/adcs 0s11010
add/adds 0s01011

In the box beside each machine language instruction encoding below, write the number
of the corresponding assembly language instruction from the list on the right (only half
of the numbers will be used):

a. 0xba010040 10 1. add w0, w1, w2

b. 0x9a020020 7 2. add x0, x1, x2

c. 0x1a020020 6 3. add x0, x2, x1

d. 0x8b010040 3 4. adds w0, w1, w2

e. 0xba020020 9 5. adds w0, w2, w1

6. adc w0, w1, w2

7. adc x0, x1, x2

8. adcs w0, w1, w2

9. adcs x0, x1, x2

10. adcs x0, x2, x1

Page 7 of 18

Question 5: Were is enid? 10 points

Consider the following combined enum declaration and typedef:

typedef enum e { E=5, F=6, I=9, L=12, N=14, T=20, X=24 } e;

a. In the box below, indicate in what section this line allocates memory, assuming it
appears outside of any function. If it does not allocate memory, write “NONE”.

NONE (e is a type,not a
variable)

Further consider this program shell, where locations within the code are numbered:

#include <stdlib.h>
typedef struct Node *Node_T;
/* 1 */ ;
static /* 2 */ ;
/* 3 */ = NULL;

void fun(/* 4 */) {
/* 5 */ ;
static /* 6 */ = 21.7;
/* other code follows */

}

b. For each row of the table, in each of the STACK, BSS, and DATA columns
indicate all the location numbers from the program above where the expression
in the first column could be placed that would result in memory being allocated in
that section of memory and would not result in a compiler warning or error. If no
location number would accomplish both, indicate this with “NONE”.

STACK BSS DATA

Node_T n 4, 5 1, 2 3
(6: compiler error)

int i 4, 5 1, 2 6 (unlike in Java)
(3: compiler warning)

double d 4, 5 1, 2 6
(3: compiler error)

Page 8 of 18

Question 6: Cello, world! 10 points

Consider a program made up of the following two files:

cello.c brood.s

L✧

#include <stdio.h>
#define H 'H'

extern void brood();
int data = H;

int main() {
brood();
printf("%cello, world!\n", data);
return 0;

}

.section .text

.global brood
brood:

adr x0, data
mov w1, 'C'
str w1, [x0]
ret

For each statement, identify to which stage of the build process (Preprocessor, Compiler,
Assembler, Linker) the statement applies, or None if it applies to none of the four stages.

P C A L N
a. Emits a warning if the C line L✧ is omitted entirely ◯ ⚫ ◯ ◯ ◯

Compiler reports “implicit declaration” of brood when seeing the function call
b. Emits a warning if L✧ is void brood(); (no extern) ◯ ◯ ◯ ◯ ⚫

extern is the default linkage for a function declaration in C, so these are equivalent
c. Emits an error if the .global directive is omitted ◯ ◯ ◯ ⚫ ◯

Compiler generates a bl; assembler makes a relocation record; linker reports error
d. Emits an error if .global is misspelled without the “.” ◯ ◯ ⚫ ◯ ◯

Without “.” the assembler treats this as an instruction it doesn’t know, not a directive
e. Finds the stdio library declarations ⚫ ◯ ◯ ◯ ◯

Preprocessor imports them from /usr/include/stdio.h when handling the #include
f. Finds the stdio library definition for printf ◯ ◯ ◯ ⚫ ◯

Linker collects object code from /usr/lib64/libc.a
g. Replaces all instances of H with 'H' in source code ⚫ ◯ ◯ ◯ ◯

Preprocessor does this when handling the #define
h. Generates a beq assembly instruction from cello.c ◯ ◯ ◯ ◯ ⚫

There is no conditional in the file, so no need to generate a cmp + conditional branch
i. Generates a bl assembly instruction from cello.c ◯ ⚫ ◯ ◯ ◯

Compiler translates brood() and printf() function calls into bl instructions
j. Calculates the relative address from data to the adr ◯ ◯ ◯ ⚫ ◯

Assembler makes a relocation record; Linker computes address + patches adr ML

Page 9 of 18

Question 7: A String Thing or Two 13 points

This problem will be working with two different implementations of a basic String ADT
with the following interface, defined in stringthing.h:

#ifndef STRINGTHING_H
#define STRINGTHING_H
#include <stddef.h>
typedef enum {FALSE, TRUE} boolean;

/* An S_T is a "string": a series of characters indexed from 0 */
typedef struct S* S_T;

/* Create a new empty String of length 0 return the String,
or NULL if insufficient memory */

S_T S_new(void);

/* Deallocate all memory associated with s */
void S_free(S_T s);

/* Return the length of s's String contents */
size_t S_length(S_T s);

/* Return the character at index i of String s
Behavior is undefined if i >= S_length(s) */

char S_charAt(S_T s, size_t i);

/* Append pc's contents (up to but not including the '\0') to the back of s
Return TRUE for success, or FALSE if insufficient memory */

boolean S_append(S_T s, char *pc);

/* Set pc's contents (up to but not including the '\0') into s beginning
at index i, overwriting existing contents and expanding s if
needed. Return TRUE for success, or FALSE leaving s unchanged if
i > S_length(s) or insufficient memory for necessary expansion */

boolean S_set(S_T s, size_t i, char *pc);

#endif

Two implementations, a client, and questions about them follow on subsequent pages.

Page 10 of 18

(The exam questions about this module continue on page 12. This page may be used
for scratch work, however any answers given on this page will not be graded.)

Page 11 of 18

s1.c – a partial implementation; assume necessary standard libraries are included:

#include "stringthing.h"
struct S {

size_t len; /* number of characters in chars */
char * chars; /* characters in the string */

};
S_T S_new(void) {

S_T s = calloc(1, sizeof(struct S));
return s;

}
void S_free(S_T s) { /* to be completed in part a. */ }
size_t S_length(S_T s) {

assert(s);
return s->len;

}
char S_charAt(S_T s, size_t i) {

assert(s);
assert(i < s->len);
return s->chars[i];

}
boolean S_append(S_T s, char *pc) {

assert(s);
assert(pc);
return /* to be completed in part b. */ ;

}
boolean S_set(S_T s, size_t i, char *pc) {

size_t pc_len;
char *chars;
assert(s);
assert(pc);
if(i > s->len)

return FALSE;
pc_len = strlen(pc);
if(i + pc_len > s->len) {

/* if s->chars is NULL, realloc is identical to malloc(i + pc_len); */
chars = realloc(s->chars, i + pc_len);
if(!chars)

return FALSE;
s->chars = chars;
s->len = i + pc_len;

}
/* strncpy(dest, src, n) copies up to n characters from src to dest */
strncpy(&s->chars[i], pc, pc_len);
return TRUE;

}

Page 12 of 18

a. In the box below, implement the S_free function from the first implementation
(s1.c) such that the module will not leak any memory:

void S_free(S_T s) {
assert(s != NULL); /* ok to do if(s != NULL) instead*/
free(s->chars);
free(s);

}

b. In the box below, complete the return statement of the S_append from the first
implementation (s1.c) to make the function accord to StringThing.h.

return S_set(s, s->len /* or S_length(s) */, pc) ;

Now consider this client program; assume necessary standard libraries are included
and that all memory allocations in S_new, S_append, and S_set always succeed. Recall
that argv[0] is the program’s name and argc is the number of elements in argv.

#include "stringthing.h"
int main(int argc, char** argv) {

S_T s = S_new();
size_t i;
if(!s) return EXIT_FAILURE;
S_append(s, argv[0]);
for(i = 1; i < (unsigned int) argc; i++) {

S_set(s, i-1, argv[i]);
}
for(i = 0; i < S_length(s); i++)

putchar(S_charAt(s, i));
S_free(s);
return EXIT_SUCCESS;

}

c. In the box below, write the output of the client (built into the program kooky)
when invoked in bash as the following command:
./kooky cold ocean swimming: the "water's" only seventeen

costwoseventeen

Page 13 of 18

s2.c – a 2nd partial implementation; assume necessary standard libraries are included:

#include "stringthing.h"
struct S {

/* first sizeof(size_t) bytes are string’s length as a size_t,
followed by that many characters of contents */

char * chars;
};
S_T S_new(void) {

S_T s = calloc(1, sizeof(struct S));
if(!s) return s;
s->chars = calloc(1,sizeof(size_t));
if(!s->chars) {

free(s);
return NULL;

}
return s;

}
void S_free(S_T s) { /* redacted so as not to spoil part a*/ }
size_t S_length(S_T s) {

assert(s);
return *(size_t*)s->chars;

}
char S_charAt(S_T s, size_t i) {

assert(s);
assert(i < S_length(s));
return /* return value to be completed in part e. */ ;

}
boolean S_append(S_T s, char *pc) { /* redacted so as not to spoil part b*/ }
boolean S_set(S_T s, size_t i, char *pc) {

size_t pc_len;
char *chars;
assert(s);
assert(pc);
if(i > S_length(s)) return FALSE;
pc_len = strlen(pc);
if(i + pc_len > S_length(s)) {

chars = realloc(s->chars, sizeof(size_t) + i + pc_len);
if(!chars) return FALSE;
s->chars = chars;
/* length update to be completed in part f. */

}
/* strncpy(dest, src, n) copies up to n characters from src to dest */
strncpy(&/* operand to be completed in part e. */, pc, pc_len);
return TRUE;

}

Page 14 of 18

You may find it useful to think about some armlab examples of this data representation:
● The empty string – 8 bytes total pointed to by the s->chars field:

○ 8 bytes representing (size_t) 0, then no additional contents
● The string with contents “abcd” – 12 bytes total:

○ 8 bytes representing (size_t) 4, then the chars 'a', 'b', 'c', and 'd'
● The string with 64 newlines – 72 bytes total :

○ 8 bytes representing (size_t) 64, then 64 '\n' chars
● The string with 1073741824 (230) 'a's: 1073741832 bytes total:

○ 8 bytes representing (size_t) 1073741824, then 1073741824 'a' chars
● Notice: there are no trailing '\0's in these strings!

d. In the box below, describe in under 10 words what changes would have to be
made to the interface stringthing.h in order to make the kooky client work
using this implementation instead of the first one:

None
(The whole point of the interface is that clients know how to use the module
without having to care about the underlying representation or implementation!)

e. In the second implementation (s2.c), two redacted expressions are the same:
i. In S_charAt, the code required to complete the return statement
ii. In S_set, the address-of operator’s operand in strncpy’s first argument

In the box below, write the expression that would correctly complete both lines:

s->chars[sizeof(size_t) + i]
(or, like we did for BigInt in A5: (s->chars + sizeof(size_t))[i])

f. In the second implementation (s2.c), the line that updates the length of the string
after expansion in S_set has also been redacted. In the box below, write the
one-line statement that would complete the appropriate update:

* (size_t*) s->chars = i + pc_len; (dereference casted s->chars)
(or, equivalently: ((size_t*) s->chars)[0] = i + pc_len;)

Page 15 of 18

Question 8: Goody Two chars 16 points

Consider the following C function, which reads in up to two chars from standard input,
stores any chars read into its array argument, and returns the number of chars read:

size_t readTwo(char ac[])
{

size_t j = 0;
int c;
assert(ac != NULL);
do {

c = getchar();
if(c == EOF)

return j;
ac[j] = c;
j++;

} while(j < 2);
return j;

}

In the box on the next page, translate this function into ARM assembly language
faithfully without optimization (i.e., maintain function state on the stack at offsets defined
by .equ constants, not in callee-saved registers). Where possible use offset memory
addressing modes instead of composing a target address through separate instructions.

You can refer to this abbreviated ARM assembly language reference guide:
Instruction(s) Description

{add,sub,lsl} dst, src1, src2 dst = src1 {+, -, <<} src2

{blo,beq} label Go to label if comparison was {“lower than”, “equal”}

{b,bl} label {Unconditionally go to , Call function at} label

cmp first, second Compare first with second, setting bits in PSTATE

ldr dst, [src] Load 4 or 8 bytes pointed to by src into dst

str src, [dst] Store 4 or 8 bytes in src to memory pointed to by dst

strb src, [dst] Store lowest 1 byte in src to memory pointed to by dst

mov dst, src Copy src to dst

ret Return to address pointed to by x30

{x,w}0 – {x,w}7 and {x,w}0 Used for arguments to and return value from functions

If you run out of space in the box on the next page, you may use page 18 for the
remainder of your response. Clearly indicate within the box that you have done so.

Page 16 of 18

.section .text

.equ EOF, -1
// fill in your stack size/offsets here and use these symbols in readTwo
.equ STACK_NUMBYTES, __32__
.equ AC, __8__
.equ J, __16__
.equ C, __24__ // other orders are possible

.global readTwo
readTwo:

sub sp, sp, STACK_NUMBYTES
str x30, [sp] // save return address to restore after calling getchar
str x0, [sp, AC] // save parameter (base address of array ac)
str xzr, [sp, J] // size_t j = 0;
// c is not initialized in the C code
// the assert macro is not translated to assembly

// do {
loop:

// c = getchar()
bl getchar
str w0, [sp, C]

// if(c == EOF) return j
cmp w0, EOF // optional to reload C before doing this
beq epilog

// ac[j] = c;
ldr x1, [sp, AC]
ldr x2, [sp, J]
strb w0, [x1, x2] // optional to reload C before doing this

// j++;
add x2, x2, 1 // optional to reload J before doing this
str x2, [sp, J]

// } while(j < 2)
cmp x2, 2
blo loop

// return j;
epilog:

ldr x0, [sp, J]
ldr x30, [sp]
add sp, sp, STACK_NUMBYTES
ret

Page 17 of 18

(Question 8 was the last question. The space below is intentionally left blank. You may
use it for scratch work – which will not be graded – or to complete Question 8 as
previously instructed.)

The theme of this exam was the fall 2022 Netflix hit release Wednesday … alas, the
vast majority of students this term reported not having seen it. References in problem
titles are italicized. Other references include the file/function name brood (which
Wednesday does while playing the cello), the executable name kooky (a throwback to
the old Addams Family theme song’s lyrics), and the first line at the bottom of this page
(a play on the traditional English nursery rhyme Monday’s Child, which was used as the
title for the first episode and is likely the source of the series’ title character’s name).

I hope your Wednesday’s exam was not full of woe!
Thanks for a great semester!

Page 18 of 18

