
COS 217, Spring 2022
Final Exam

This exam consists of 7 questions, and you have 180 minutes – budget your time wisely. Do all of your
work on these pages (using provided blank pages for scratch space) and give your answers in the space
provided. Assume the ArmLab/Linux/C/gcc217 environment unless otherwise stated.

This is a closed-book, closed-note exam, with a 1-page study sheet allowed. Please place items that you
will not need out of view in your bag or under your working space at this time. Electronic devices such as
cell phones, laptops, music players, etc. may not be used during this exam.

Name: NetID:	

Precept (circle one): 1: MW 1:30 Christopher Moretti 4: TTh 1:30 Huihan Li	

2: MW 3:30 Christopher Moretti 7: TTh 3:30 Cedrick Argueta 	

 3: TTh 12:30 Maxine Perroni-Scharf

This examination is administered under the Princeton University Honor Code. Students should sit one seat
apart from each other, and refrain from talking to other students during the exam. All suspected violations
of the Honor Code must be reported to honor@princeton.edu.

In the box below, write out and sign the Honor Code pledge before turning in the test:
	

“I pledge my honor that I have not violated the Honor Code during this examination.”

Pledge and Signature:

For instructor use only:

Question Max Points Points Earned Question Max Points Points Earned

1 15 5 25

2 20 6 5

3 18 7 15

4 22 TOTAL 120

 Sample Solutions

Exam statistics:
Mean 94.2/120 (78.5%) StdDev: 16.7/120
Max 118/120. Percentiles: 25th – 86/120; 50th (median) – 98/120; 75th – 106/120.

Page 2 of 18

(blank page)

Page 3 of 18

Q1. Truthiness and Falsiness (15 points)

Circle T (True) or F (False) for each statement.

 Answer Statement

A T F The pre-processor adds the contents of other files to a C file.

B T F The compiler determines which variables go into the rodata, data, and bss sections.

C T F The compiler can detect memory leak errors in the code.

D T F The assembler generates assembly language code.

E T F The linker creates relocation records.

F T F The linker patches object code with virtual memory addresses.

G T F The expression 0xFF – 0xEE evaluates to 11 in decimal.

H T F If char s[5] = “mom”; then the expression *(s+2) - *s evaluates to 0.

I T F The expression sizeof(7UL) > sizeof(1L) evaluates to 1 (true).

J T F AArch64 is a Complex Instruction Set Computer (CISC) architecture.

K T F The stack memory can run out of space due to an unbounded number of function
calls.

L T F Statement testing can require more test cases than Path testing.

M T F Stress testing is re-running all test cases after fixing a bug.

N T F A dangling pointer is when you fail to free some chunk of allocated memory.

O T F An optimizing compiler can perform function inlining to improve performance.

The compiler generates assembly code.
The assembler generates machine code.

The assembler creates relocation records.
The linker processes relocation records.

0xFF-0xEE = 0x11.
0x11 is 17 in decimal.

The sizes are equal.
(Both 8 bytes on armlab)
ARM is RISC: Reduced

Instruction Set Computer

This is regression testing.

This is a
memory leak.

#include directives add header file
contents to the file being preprocessed.

Page 4 of 18

Q2. Is this in scope? (20 points)

Consider the following C code in file1.c:

int a;
int b = 0;
static int c = 1;

static int DoubleIt(int input) {
 int d = 2;
 static int e = 3;
 static int f;
 int g = d * input;
 return g;
}

(a) Fill in the blanks in the following table: (15 points)

variable Scope Linkage Duration

a file external process

b file external process

c file internal process

d block internal temporary

e block internal process

f block internal process

g block internal temporary

(b) Which section of memory is f in? (2 points)

BSS, because it is a process duration variable that was not initialized in its declaration.

Page 5 of 18

We now create a second C file, file2.c, which includes the following declarations outside any function,
plus a main function (not shown):

extern int a;
int b = 0;
static int c = 2;

(c) When we build file1.c and file2.c (and no other files) together into a program, which of the

three lines from file2.c will cause an error? (1 point)

int b = 0;

(d) What is the problem? (1 point)

This would result in two different externally linked definitions of b.
The other two are fine: a is a declaration that there is an externally linked definition that exists
somewhere (it does, in file1.c); c is internally linked as is file1.c’s c, so there is no conflict.

(e) Which stage of the build process will report the error? (1 point)

Linker.

Page 6 of 18

Q3. Modular Table (18 points)

Consider the following excerpts from an interface (top box) and implementation of that interface (bottom
box) for a variant of the symbol table module you wrote in Assignment 3:

Interface:

Implementation:

(a) The interface (top box) above violates an ADT design principle from the Modularity lecture. What is
the problem found in the interface above? (1 point)

The function comment for ST_new partially reveals the underlying implementation of the
object (that it maintains the object’s contents in k buckets)

/* A SymTable_T is a set of key-value pairs */
typedef struct SymTable* SymTable_T;

/* instantiate and return a new empty
SymTable_T object with k buckets, or NULL
if there is insufficient memory */
SymTable_T ST_new(size_t k);

typedef struct binding* Binding_T;
struct binding {
 char* key;
 void* val;
 Binding_T next;
};
struct SymTable {
 Binding_T* buckets;
 size_t count;
 size_t numBuckets;
};
SymTable_T ST_new(size_t k) {
 /* implementation not shown */
}

Page 7 of 18

(b) The following lines of code make up the body of a new interface function ST_maxValue, which takes
an instance pointer st and a comparison function (with strcmp semantics) comp and returns the value
(not the key!) in the symbol table with the maximal value based on the comparison function. These
lines, however, have become scrambled and have lost their indentation. In the 13 blanks below, write
the line numbers in their proper order that results in a correct implementation of this function. (13
points)

3 or 9 9 or 3 13 11 4 8 6 12 10 1 7 2 5

___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(c) What is the type of the comp parameter in the ST_maxValue function? (2 points)

int (*) (void*, void*)

(d) Now consider a representation invariant for the symbol table that each bucket is stored in descending
order (i.e., for any valid symbol table, the largest value in each bucket is at the head of that list and
the smallest value is at the tail of that list). Describe in two sentences or less a simplification that can
be made to the ST_maxValue function above by taking advantage of this constraint. (2 points)

We would not need the while loop through all nodes in each bucket, because the head of each
bucket is our only candidate for the max element.

1 } /* end while */
2 if(max) return max->val;
3 size_t i;
4 Binding_T c = st->buckets[i];
5 return NULL;
6 if(!max || (*comp)(c->val, max->val) >0)
7 } /* end for */
8 while(c != NULL) {
9 Binding_T max = NULL;
10 c = c->next;
11 for(i = 0; i < st->numBuckets; i++) {
12 max = c;
13 assert(st != NULL && comp != NULL);

Page 8 of 18

Q4. Buggy Parents (22 points)

The function getParentPath should return a defensive copy of a string representing the parent of a path
parameter like in Assignment 4. If path is the root, the string returned should be the empty string.

You should assume that all relevant header files have been #included. You may assume the path passed
in as an argument is well formed by the standards of Assignment 4: it is a non-empty '\0'-terminated
string that neither begins nor ends with a '/' character and does not contain consecutive '/' delimiters.

Here are some concrete examples of the function argument and resulting return values:
path: "cos", i.e. {'c', 'o', 's', '\0'} should return a new string with contents: "", i.e. {'\0'}
path: "cos/217" should return a new string with contents: "cos"
path: "cos/217/forever!/Yay:)" should return a new string with contents: "cos/217/forever!"

Now consider this implementation:

As a reminder, the string.h interface function strncpy(dest, src, n) copies the first n bytes of src
to dest. If src’s length is less than n, strncpy writes null bytes to dest until n bytes have been written.

(a) Unfortunately, the implementation above is buggy!

For this problem, the following count as bugs: warnings or errors from gcc217, runtime crashes, incorrect
behavior, inefficiency as judged in Assignments 2 and 3 (i.e., extra traversals beyond what is required), or
dynamic memory management issues observable by MemInfo or Valgrind.

In the spaces below, identify 3 distinct bugs (there may be more than that in the code, and they could be
bugs of any kind, but you should provide only 3). To identify each bug, list the line number(s) where the
bug occurs and a one-sentence description of the bug. (9 points)

Bug 1: Here are several correct answers:
 1. path is a const char*, end is a char *, so line 3 will result in a compiler warning.
 2. if path is the root, it has no / characters, so line 6 will traverse off the front of the string

Bug 2: 3. line 7 allocates one too few bytes of memory (the new string must end in a nullbyte)
 4. Between lines 7-8, there is no check that malloc succeeded
 5. strncpy in line 8 does not copy a nullbyte into parent, so we must do so manually after

Bug 3: 6. the algorithm on lines 5, 6, 8 will traverse the entirety of path twice. It is possible to
 keep track of the last / on the first traversal and thus only have to traverse the parent
 portion of path in the second traversal.

1 char* getParentPath(const char* path) {
2 char* parent;
3 char* end = path;
4 assert(path != NULL);
5 end += strlen(path);
6 while(*end != '/') end--;
7 parent = malloc(end - path);
8 strncpy(parent, path, end – path);
9 return parent;
10 }

Page 9 of 18

(b) Write a function comment for getParentPath that accords to the COS 217 assignment standards for
establishing a contract with clients who will call your function. (5 points)

Return a string with a copy of the path parameter’s parent’s path. If path is the root (i.e., it
does not contain a slash), return the empty string. If memory for the new string cannot be
allocated, return NULL. The caller owns the memory returned.

(c) Define a DFA (in either the visual format from lecture or the textual format from Assignment 1) that
accepts only paths that are well formed as specified above. Here is that description, repeated for
convenience:

A non-empty '\0'-terminated string that neither begins nor ends with a '/' character and does not
contain consecutive '/' characters.

Remember to identify your start state, classify each state as accept or reject, label all state transitions,
and name each state with a semantically meaningful name. (8 points)

At start
(empty)
or
At delimiter
(ends in Slash)

Erroneous
(Begins with slash
or consecutive
slashes)

Dir/File name

Other Slash

Slash

Other (any)

Other

Note: first '\0' is considered end of input.

Page 10 of 18

Q5. Mysterious Assembly (25 pts)

An AArch64 reference is provided at the end of this question. Consider the following AArch64 program:

 .section .rodata
scanFormat:
 .string "%d"
printFormat:
 .string "Answer is %d\n"

 .section .text
 .global mystery
mystery:
 sub sp, sp, 48
 str x30, [sp]
 str x19, [sp, 8]
 str x20, [sp, 16]
 str x21, [sp, 24]

 mov w19, wzr
 add w20, w19, 1
 add w21, w19, 2
loop1:
 cmp w20, w0
 bgt endloop1
 mul w20, w20, w21
 add w19, w19, 1
 b loop1
endloop1:
 sub w0, w19, 1

 ldr x19, [sp, 8]
 ldr x20, [sp, 16]
 ldr x21, [sp, 24]
 ldr x30, [sp]
 add sp, sp, 48
 ret
 .size mystery, .-mystery

 .global main
main:
 /* prologue */
 sub sp, sp, 16
 str x30, [sp]
 /* call to scanf */
 adr x0, scanFormat
 add x1, sp, 8
 bl scanf
 /* call to mystery */
 ldr w0, [sp, 8]
 bl mystery
 /* call to printf */
 mov w1, w0
 adr x0, printFormat
 bl printf
 /* return 0 and epilogue */
 mov w0, 0
 ldr x30, [sp]
 add sp, sp, 16
 ret
 .size main, .-main

Page 11 of 18

(a) Consider first the function mystery. How many parameters does it take as input? (1 point)

It takes one parameter (of type int).

(b) Does it return a value? (Yes, or No?) (1 point)
Yes, it returns a value (of type int).

(c) Write flattened-C corresponding to the function mystery. Assume that registers w19, w20, w21
correspond to local variables r, p, m, respectively. Use the same label names as the assembly
language code. (12 points)

C code:

int mystery (int n) {
 int r = 0;
 int p = 1;
 int m = 2;

 loop1:
 /* while (p <= n) { */
 if (p > n)
 goto endloop1;

 p *= m;
 r++;
 goto loop1;
 /* } */

 endloop1:
 return (r-1);
}

Page 12 of 18

(d) Now consider the function main. Note that it has calls to scanf, mystery, and printf.
What does this program print if the user provides input 16? (1 point)

Answer is 4 <newline>

(e) What does this program print if the user provides input 15? (1 point)

Answer is 3 <newline>

(f) What does this program print if the user provides an input that is 0 or a negative number? (1 point)

Answer is -1 <newline>

(g) What does the function mystery do? (Hint: Try out the program on a few other positive numbers if
you like.) Show its specification in the form of a function comment that meets the requirements from
your programming assignments in this course. (4 points)

If the argument n is a positive number, mystery returns the floor of log2 n.
If n is 0 or a negative number, it returns -1.

Alternate acceptable explanations for positive case:

If n is a positive number, it returns the integral part of log2 n.

If n is a positive number, it returns the highest power of 2, such that 2 raised to that power is smaller
than or equal to n.

Page 13 of 18

(h) List two distinct optimizations (i.e., not the same optimization on two different variables) that you can
perform on the assembly code for mystery to make the program run faster, and state how they would
help. (4 points)

You don’t need to show the optimized assembly code, just briefly describe the optimizations for the
specific given code (not just a general technique).

Here are examples of correct responses:
1. Change the multiply (mul) instruction to a logical shift left (lsl).

A left shift is a faster instruction than a multiply instruction.

2. Instead of using callee-saved registers (w19, w20, w21), use caller-saved registers, since mystery
does not call any other function. Then, those registers do not need to be saved on the stack nor
restored from the stack.

3. A more extreme extension of 2.: since mystery does not call any other function, there is no need
for a prologue and epilogue at all.

4. Use the guarded-loop pattern to save one branch instruction

AArch64 quick reference
add/sub/mul dst, src1, src2

Add/subtract/multiply src1 and src2, put result in
dst.

mov dst, src
Copy src to dst

ldr dst, [src]
Load word or quad from memory pointed to by
src into dst

str src, [dst]
Store word or quad from src to memory pointed
to by dst

cmp src1, src2
Compare two registers, set condition flags

b label
 Unconditional branch to label
bgt label
 Branch to label if greater than (signed)
bl label

Branch to label and save return address in x30
adr dst, var
 Put address of var in dst
ret

Return, i.e., branch to address in x30

x0..x30, xzr
64-bit (quad) registers

w0..w30, wzr
32-bit (word) registers

r0..r7

Parameters, scratch space, caller-saved
r0

Return value from function
r9..r15

Scratch, caller-saved
r19..r28

Scratch, callee-saved
x30

Link register (return address)
zr

Always holds zero

Page 14 of 18

MISSING: 17FFFFFC e

Q6. Missing Branch (5 points)

Consider again the assembly language program from the previous question. This time we will focus on a
small part of the objdump output shown below, which shows the disassembled instructions for the loop in
the mystery function.
…

0000000000000020 <loop1>:
 20: 6b00029f cmp w20, w0
 24: 5400008c b.gt 34 <endloop1>
 28: 1b157e94 mul w20, w20, w21
 2c: 11000673 add w19, w19, #0x1
 30: MISSING b 20 <loop1>

0000000000000034 <endloop1>:
 34: 51000660 sub w0, w19, #0x1

…

In the box above on the right, provide the machine language encoding which is MISSING for only the
branch (b) instruction highlighted in red, for which the machine language format is shown here:

• Note that the first column lists the offset of each instruction (in hexadecimal), which you can use to
compute the displacement that is needed to fill the correct value in the instruction format.

• Recall also that each machine language instruction is 32-bits, so a machine language instruction can
be written as 8 hexadecimal digits (hexits), as shown in the objdump output above. You will likely
want to work in binary, however your answer should be in hex.

Page 15 of 18

(blank page)

Explanation for Q6:

1. Bits 31-26 are 000101 as shown in the format.
2. You have to compute the imm26 part of the machine language instruction.
3. This is a relative displacement, i.e., offset of branch target – offset of current instruction.

a. Offset of branch target instruction: 0x0000 0000 0000 0020
b. Offset of current instruction: 0x0000 0000 0000 0030
c. Displacement:

negative 0000 0000 0000 0000 0000 0001 0000 (28 bits)
d. Displacement shifted right by 2 bits:

negative 0000 0000 0000 0000 0000 0000 0100 (26 bits)
e. Displacement in 2’s complement:

 11 1111 1111 1111 1111 1111 1100 (26 bits)
4. Putting together bits 31-26 and bits 25-0 (imm26), we get machine language instruction:

 0001 0111 1111 1111 1111 1111 1111 1100 (32 bits)
5. In hex, the machine language instruction is:

 1 7 F F F F F C (8 hexits = 32 bits)

Page 16 of 18

void funA(unsigned int a) {
 if (a & (~1))
 funA(a>>1);
 putchar(‘0’+(a & 1));
}

if (a & (~1)) fun(a>>1);

putchar(‘0’+(a & 1)); }

}

Q7. Finally, some fun! (15 points)

For each code snippet, give a short (at most one line) description of what the program does. Assume all
necessary header files are included.

(a) What does the following function print to stdout for a non-negative number a? (5 points)

It prints the binary representation of a.

Explanation:

1. a & ~1 will be true when a has any non-zero bits in bit positions 1-31 (i.e., positions other than
the rightmost bit).

2. In the above case, funA is called recursively on input a shifted right by 1 bit, which will print
the binary representation of a divided by 2.

3. Note that the recursive call does not change a itself. After the recursive call returns, this call
prints the character ‘0’ or ‘1’, depending on the 0th bit of a.

(b) How does funB() change the string passed to it? Recall that the function toupper converts a lower-

case letter to the corresponding upper-case letter. (5 points)

It changes every third character of the string from a lower-case to an upper-case letter,
starting from the fourth character.

Alternate description: it capitalizes characters in indices of the string that are positive multiples of 3.

(If any such third character is not a lower-case letter, then that character is not changed.)

char* funB(char *pStr) {
 int i, n = strlen(pStr);

 for (i = 3; i < n; i += 3)
 pStr[i] = toupper(pStr[i]);

 return pStr;
}

Page 17 of 18

(c) For what kind of non-negative numbers n does the following function return 1? (5 points)

It returns 1 for any number that is a power of 4.

(Note that this corresponds to even powers of 2, which received full credit whether expressed in words or
as 22n. The response “every other power of 2”, received 4 points credit, as this description could just as
well describe odd powers of 2, which would be wrong.)

Explanation:

1. The condition (n & (n-1)) will be true if n is not a power of 2.
For such numbers, funC returns a 0 early.

2. If n is a power of 2, it will have a 1 in some position and all other bits are 0.
3. The next condition (n & 0x55555555) checks if the 1 is in a position such that bitwise and-

ing with 5 (i.e., 0x0101) in every hexit results in true, in which case funC returns 1.

int funC(unsigned int n) {
 if (n & (n-1))
 return 0;
 if (n & 0x55555555)
 return 1;
 else
 return 0;
}

Page 18 of 18

(blank page)

