
Q1 Instructions and Pledge
1 Point

This exam consists of 8 multi-part questions (plus the pledge), and you have 180 minutes --

budget your time wisely.

This is a closed-book, closed-note exam, and "cheat sheets" are not allowed. During the exam

you must not refer to the textbook, course materials, notes, or any information on the Internet.

You may not compile or run any code on armlab or any other machine.

You are not allowed to communicate with any other person, whether inside or outside the

class. You may not send the exam problems to anyone, nor receive them from anyone, nor

communicate any information about the problems or their topics. If you have technical issues

or need to ask a clarifying question about the wording of some problem, please post a private

message on Ed.

You may use blank paper as scratch space, but you must enter your answer in the online

system in order to receive credit.

This examination is administered under the Princeton University Honor Code, and by signing

the pledge below you promise that you have adhered to the instructions above.

Please type out the Honor Code pledge exactly as follows, including this exact spelling and

punctuation:

I pledge my honor that I have not violated the Honor Code during this examination.

I pledge my honor that I have not
violated the Honor Code during this
examination.

Now type your name as a signature confirming that you have adhered to the Honor Code:

Q2 Make me!
8 Points

Here are fragments of modules that will be built into one executable named testtable . All

pertinent information is shown.

Christopher Moretti
Exam Statistics:

Minimum: 36
Median: 82
Maximum: 100

Mean: 80.63
StdDev: 13.62

Question averages:
Q1: 100%
Q2: 92%
Q3: 73%
Q4: 76%
Q5: 83%
Q6: 60%
Q7: 81%
Q8: 78%
Q9: 97%�

/* testtable.c */

#include <stdio.h>

#include "table.h"

... rest of testtable.c

/* table.h */

#ifndef TABLE_INCLUDED

#define TABLE_INCLUDED

#include <stddef.h>

#include "mydefs.h"

... rest of table.h

#endif

/* table.c */

#include "table.h"

#include "node.h"

... rest of table.c

/* node.h */

#ifndef NODE_INCLUDED

#define NODE_INCLUDED

#include "mydefs.h"

... rest of node.h

#endif

/* node.c */

#include "node.h"

... rest of node.c

/* mydefs.h */

#ifndef MYDEFS_INCLUDED

#define MYDEFS_INCLUDED

... rest of mydefs.h

#endif

You must now write a Makefile for this project that compiles with COS 217 best practices. Its

structure will be as follows:

TARGET1: DEPENDENCIES1

 gcc217 testtable.o table.o node.o -o testtable

TARGET2: DEPENDENCIES2

 gcc217 -c testtable.c

TARGET3: DEPENDENCIES3

 gcc217 -c table.c

TARGET4: DEPENDENCIES4

 gcc217 -c node.c

And here are some options for target/dependency rules:

(A) node.c: node.h

(B) node.o: node.c

(C) node.o: node.c node.h mydefs.h

(D) table.o: table.c table.h node.h

(E) table.o: table.c table.h node.h mydefs.h

(F) table.o: table.c table.h stddef.h mydefs.h node.h mydefs.h

(G) testtable: testtable.o table.o node.o

(H) testtable: testtable.c table.c node.c table.h node.h

(I) testtable: testtable.o table.o node.o table.h node.h mydefs.h

(J) testtable.o: testtable.c table.h mydefs.h

(K) testtable.o: testtable.c table.h node.h mydefs.h

(L) testtable.o: testtable.c table.h stdio.h stddef.h

(M) None of the above

For each of the target/dependency lines to be included, write the letter corresponding to the

best option from the list above. You will not use all options.

Q2.1
2 Points

TARGET1: DEPENDENCIES1

G

EXPLANATION

This, being the first target in the Makefile , is the rule to build the executable. It must

depend only on .o files.

Q2.2
2 Points

TARGET2: DEPENDENCIES2

J

EXPLANATION

testtable.o should be built from the corresponding .c file and any .h files included,

directly or indirectly, by it. However, it should not depend on standard library .h files.

Q2.3
2 Points

TARGET3: DEPENDENCIES3

E

EXPLANATION

table.o should be built from the corresponding .c file and any .h files included, directly or

indirectly, by it. However, it should not depend on standard library .h files. Also, .h

dependencies should not be listed twice.

Q2.4
2 Points

TARGET4: DEPENDENCIES4

C

EXPLANATION

node.o should be built from the corresponding .c file and any .h files included, directly or

indirectly, by it.

Q3 My memory is failing me
14 Points

For each code snippet below, indicate which of the listed memory management issues the

code exhibits, if any. (If it exhibits multiple issues, select the first one encountered.) Assume

that memory allocation always succeeds, that all necessary #include s are present, and that

there is no other relevant code outside of that shown. (Specifically, if the code shown fails to

free some allocated memory, it has a memory leak -- assume that later code does not free

anything.)

Q3.1
2 Points

int *pi = calloc(sizeof(int), 5);

int *pi2 = pi;

pi2[1] = 42;

free(pi2);

EXPLANATION

pi and pi2 point to the same place, so calling free on either one is equivalent.

Q3.2
2 Points

int *pi = calloc(sizeof(int), 5);

pi[pi[4]] = 42;

free(pi);

EXPLANATION

calloc initializes allocated memory to zero, so the second line is equivalent to pi[0] = 42 .

Q3.3
2 Points

char *vacation = "Summer of sun";

vacation[10] = 'f';

printf("%s\n", vacation);

This code leaks memory.

This code writes to a memory location it shouldn't.

This code reads from a memory location it shouldn't.

This code calls free on a pointer it shouldn't.

This code has none of the above issues.

This code leaks memory.

This code writes to a memory location it shouldn't.

This code reads from a memory location it shouldn't.

This code calls free on a pointer it shouldn't.

This code has none of the above issues.

EXPLANATION

String literals are stored in rodata , which means they can't be edited.

Q3.4
2 Points

char *palindrome = "racecar";

char reversed[7];

size_t i;

for (i = 0; i < strlen(palindrome); i++)

 reversed[i] = palindrome[6 - i];

printf("%s\n", reversed);

EXPLANATION

This code fails to allocate memory for, and copy, the terminating byte of the string. So, the

printf call will read off the end of the array.

Q3.5
2 Points

char greeting[5];

strcpy(greeting, "Hiya");

printf("%s\n", greeting);

free(greeting);

This code leaks memory.

This code writes to a memory location it shouldn't.

This code reads from a memory location it shouldn't.

This code calls free on a pointer it shouldn't.

This code has none of the above issues.

This code leaks memory.

This code writes to a memory location it shouldn't.

This code reads from a memory location it shouldn't.

This code calls free on a pointer it shouldn't.

This code has none of the above issues.

EXPLANATION

greeting is a stack-allocated array, which means it should not be free 'd.

Q3.6
2 Points

int **ppi = malloc(sizeof(int*));

*ppi = malloc(sizeof(int));

**ppi = 42;

free(ppi);

EXPLANATION

This code calls malloc twice, but only frees one of the resulting allocations.

Q3.7
2 Points

char *pc = malloc(sizeof(char));

int *pi = (int*)pc;

int i = *pi;

printf("%d", i);

free(pc);

This code leaks memory.

This code writes to a memory location it shouldn't.

This code reads from a memory location it shouldn't.

This code calls free on a pointer it shouldn't.

This code has none of the above issues.

This code leaks memory.

This code writes to a memory location it shouldn't.

This code reads from a memory location it shouldn't.

This code calls free on a pointer it shouldn't.

This code has none of the above issues.

EXPLANATION

The call to malloc only allocated 1 byte of memory. Accessing it as an int reads 4 bytes.

Q4 Where did I put that variable again?
14 Points

Each of the following declarations, when encountered inside a function body, will cause

memory to be allocated. This may happen either at compile/link time or at run time, in one or

more of the stack, heap, rodata, data, and/or bss sections. For each variable, how much

memory is allocated and where? Assume that the code is compiled without optimization.

Q4.1
1 Point

static int var1 = 42;

Q4.2
1 Point

(Same code as in 4.1)

This code leaks memory.

This code writes to a memory location it shouldn't.

This code reads from a memory location it shouldn't.

This code calls free on a pointer it shouldn't.

This code has none of the above issues.

1 byte

2 bytes

3 bytes

4 bytes

8 bytes

42 bytes

EXPLANATION

An int on armlab is 32 bits long. This is a static variable, is not read-only, and is initialized,

so it goes in data.

Q4.3
1 Point

static long var2;

Q4.4
1 Point

(Same code as in 4.3)

stack

heap

rodata

data

bss

1 byte

2 bytes

3 bytes

4 bytes

8 bytes

42 bytes

stack

heap

rodata

data

bss

EXPLANATION

This is an uninitialized static variable, so it goes in the bss section. A long is 64 bits on

armlab.

Q4.5
1 Point

unsigned short var3;

Q4.6
1 Point

(Same code as in 4.5)

EXPLANATION

This is a local variable, and is allocated on the stack. An unsigned short is 2 byes long.

Q4.7
1 Point

const char *var4 = "42";

Considering only var4 (as opposed to *var4), how much memory is allocated and where?

1 byte

2 bytes

3 bytes

4 bytes

8 bytes

42 bytes

stack

heap

rodata

data

bss

Q4.8
1 Point

(Same code as in 4.7)

EXPLANATION

var4 is a pointer, so is 8 bytes long. The pointer itself is a local variable, so it goes on the

stack.

Q4.9
1 Point

(Same code as in 4.7)

Considering only *var4 (as opposed to var4), how much memory is allocated and where?

1 byte

2 bytes

3 bytes

4 bytes

8 bytes

42 bytes

stack

heap

rodata

data

bss

1 byte

2 bytes

3 bytes

4 bytes

8 bytes

42 bytes

Q4.10
1 Point

(Same code as in 4.7)

EXPLANATION

var4 points to a string literal, which lives in rodata. The string is 3 bytes long, counting the

'\0' at the end.

Q4.11
1 Point

char *var5 = malloc(42 * sizeof(char));

Considering only var5 (as opposed to *var5), how much memory is allocated and where?

Q4.12
1 Point

(Same code as in 4.11)

stack

heap

rodata

data

bss

1 byte

2 bytes

3 bytes

4 bytes

8 bytes

42 bytes

EXPLANATION

var5 is a pointer, so is 8 bytes long. The pointer itself is a local variable, so it goes on the

stack.

Q4.13
1 Point

(Same code as in 4.11)

Considering only *var5 (as opposed to var5), how much memory is allocated and where?

Q4.14
1 Point

(Same code as in 4.11)

EXPLANATION

var5 points to memory allocated on the heap by malloc . sizeof(char) is 1, so malloc

allocated 42 bytes.

stack

heap

rodata

data

bss

1 byte

2 bytes

3 bytes

4 bytes

8 bytes

42 bytes

stack

heap

rodata

data

bss

Q5 I can't find my bit whacker
10 Points

You are given the task of writing a function with the following signature:

int mask(int iSrc, int iNumBits);

The aim is to mask off the specified number of bits from a 32-bit int . That is, the function

should set everything except the iNumBits least-significant (rightmost) bits of iSrc to zero, and

return the result. For example, a call to mask(27, 4) should return 11, because 27 is 11011 in

binary, and masking off the 4 least-significant bits yields 1011 in binary, or 11 in decimal.

Consider the following attempts at writing mask , not all of which are successful. For each

function, indicate what it returns for mask(27, 4) . Assume that any needed header files have

been included, and any needed libraries are linked.

The pow(x, y) function returns x raised to the power y .

The operation ~x computes the bitwise complement of x .

The operation x << y computes x shifted left by y bits, filling in on the right with zeroes.

The operation x >> y computes x shifted right by y bits. You should assume that, when

executed on signed numbers, it implements an arithmetic shift that fills in on the left with

whatever is in x 's most-significant (leftmost) bit.

Hint: each of the possible answers occurs exactly once in the five code snippets below.

Q5.1
2 Points

int mask(int iSrc, int iNumBits) {

return iSrc & iNumBits;

}

-5

0

1

11

Non-deterministic. No way to tell.

EXPLANATION

We'd need to bitwise-and iSrc with a variable containing iNumBits ones (and the rest

zeroes), not with iNumBits itself.

Q5.2
2 Points

int mask(int iSrc, int iNumBits) {

int result;

int i;

for (i = 0; i < iNumBits; i++)

 result = (result << 1) + 1;

 result = iSrc & result;

return result;

}

EXPLANATION

result is uninitialized, so this may or may not succeed depending on the initial contents of

result .

Q5.3
2 Points

int mask(int iSrc, int iNumBits) {

int result;

 result = (int) pow(2, iNumBits) - 1;

 result = iSrc && result;

return result;

}

-5

0

1

11

Non-deterministic. No way to tell.

EXPLANATION

The computation of result uses logical-and (&&) instead of bitwise-and (&). Recall that &&

returns 0 or 1, instead of performing an operation for each bit.

Q5.4
2 Points

int mask(int iSrc, int iNumBits) {

int result = 0;

 result = ~result;

 result = result >> iNumBits;

 result = result << iNumBits;

 result = ~result;

 result = iSrc & result;

return result;

}

EXPLANATION

Despite being a bit convoluted, this code sequence always succeeds. Note that the first

right-shift leaves result unchanged.

Q5.5
2 Points

int mask(int iSrc, int iNumBits) {

-5

0

1

11

Non-deterministic. No way to tell.

-5

0

1

11

Non-deterministic. No way to tell.

int result = 0;

 result = iSrc << (32 - iNumBits);

 result = result >> (32 - iNumBits);

return result;

}

EXPLANATION

This sometimes succeeds. However, result is signed, so if there's a 1 in the leftmost bit

after the left shift, the right shift will fill in 1's on the left.

Q6 I'm casting about for answers
12 Points

Consider this translation from a portion of a C program to AARCH64 assembly language. A

reference for the relevant AARCH64 instructions is included below.

// varI = (CAST_1) varA;

ldrb w0, [sp, varA]

str w0, [sp, varI]

// varJ = (CAST_2) varB;

ldrsb w0, [sp, varB]

str w0, [sp, varJ]

// if (varI < varJ + 1) goto label1;

ldr w0, [sp, varI]

ldr w1, [sp, varJ]

add w1, w1, 1

cmp w0, w1

blt label1

Instruction Description

ldr dst, [src] Load word (32 bits) or quad (64 bits) to dst

-5

0

1

11

Non-deterministic. No way to tell.

Instruction Description

ldrb dst, [src] Load byte to dst with zero-extension

ldrsb dst, [src] Load byte to dst with sign-exteinsion

str src, [dst] Store word (32 bits) or quad (64 bits) at dst

add dst, src1, src2 Add src1 and src2 , storing result in dst

cmp src1, src2 Compare src1 and src2 , setting condition flags

blt label Branch to label if (signed) less than

Q6.1
3 Points

What is the most likely type for varA ?

EXPLANATION

The ldrb implies a single-byte variable (a char of some kind), and the zero-extend implies

that varA is unsigned.

Q6.2
3 Points

What is the most likely type for CAST_1 ?

signed char

char / unsigned char (equivalent on armlab)

int

unsigned int

long

pointer

EXPLANATION

The blt instruction implies a signed comparison, while the w register implies 32 bits, which

rules out a pointer.

Q6.3
3 Points

What is the most likely type for varB ?

EXPLANATION

The ldrsb implies a single-byte variable (a char of some kind), and the sign-extend implies

that varB is signed.

Q6.4
3 Points

What is the most likely type for CAST_2 ?

signed char

char / unsigned char (equivalent on armlab)

int

unsigned int

long

pointer

signed char

char / unsigned char (equivalent on armlab)

int

unsigned int

long

pointer

EXPLANATION

The blt instruction implies a signed comparison, while the w register implies 32 bits, which

rules out a pointer. Note the fact that we used blt means that both CAST_1 and CAST_2

were to (signed) int . If either operand of the comparison were unsigned , the other

operand would have been implicitly cast to unsigned , and we would have needed an

unsigned branch instruction (such as blo).

Q7 I feel lucky
18 Points

Consider the following AARCH64 program:

 .section .rodata

scanfFormat: .string "%d"

printfFormat: .string "%d\n"

 .section .text

f:

 sub sp, sp, 16

 str x30, [sp]

 bl rand

 and w0, w0, 1

 ldr x30, [sp]

 add sp, sp, 16

 ret

 .global main

main:

 sub sp, sp, 32

 str x30, [sp]

 str x19, [sp,8]

 str x20, [sp,16]

 adr x0, scanfFormat

 add x1, sp, 24

 bl scanf

 cmp w0, 1

 bne leave

signed char

char / unsigned char (equivalent on armlab)

int

unsigned int

long

pointer

 ldr w19, [sp,24]

 mov w20, 0

loop:

 cmp w19, 0

 ble postLoop

 bl f

 add w20, w20, w0

 sub w19, w19, 1

 b loop

postLoop:

 adr x0, printfFormat

 mov w1, w20

 bl printf

leave:

 ldr x30, [sp]

 ldr x19, [sp,8]

 ldr x20, [sp,16]

 add sp, sp, 32

 mov w0, 0

 ret

Quick AARCH64 reference:

Instructions / Registers Description

add/sub/and dst, src1, src2 dst = src1 +/-/& src2

mov dst, src Copy src to dst

cmp src1, src2 Compare registers, set condition flags

adr dst, var Store address of var in dst

ldr dst, [src] Load word or quad pointed to by src into dst

str src, [dst] Store word or quad from src to memory pointed to by dst

b label Unconditional branch to label

bl label Branch to label and save return address in x30

ret Return to address in x30

Instructions / Registers Description

bne/ble label Conditional branch if not equal / (signed) less than or equal

x0..x7 Hold parameters to function

x0 Holds return value from function

x19..x29 Callee-saved scratch registers

Q7.1
2 Points

Let's start by analyzing the function f .

How many parameters does it take as input?

EXPLANATION

The function does not use values that were provided in x0..x7 . It manipulates w0 , but only

after getting the return value from rand .

Q7.2
2 Points

How many local variables does it use?

EXPLANATION

A giveaway is that it does not use the stack except for saving and restoring x30 . It also

does not use callee or caller saved registers.

0

1

2

A random number

0

1

2

A random number

Christopher Moretti
x28

Q7.3
2 Points

Recall that the rand() function returns a pseudorandom int in the range from 0 to some large

number RAND_MAX (which happens to be 2147483647 on armlab). Given this, which game of

chance is f most likely intended to simulate?

EXPLANATION

It obtains a random integer, and then uses only its least-significant bit. So, it outputs 0 or 1

with equal probability.

Q7.4
2 Points

Now let's turn to main .

How many callee-saved registers does it use (not counting the return address)?

EXPLANATION

The code saves, uses, and restores x19 and x20 .

Q7.5
2 Points

The first argument to scanf is scanfFormat . What is the second argument to scanf ?

Flipping a coin -- odds 1 in 2

Rolling a die -- odds 1 in 6

Spinning a roulette wheel -- odds 1 in 38

Playing the lottery -- odds 1 in 2147483648

Guessing an answer on a COS 217 final -- odds unspecified, but probably not very good

0

1

2

3

4

EXPLANATION

The stack frame is 32 bytes long (which we know because we subtracted 32 from sp), but

the function prologue only stored 24 bytes' worth of stuff on it. We are free to use the last 8

bytes of the stack frame for a local variable, and the add x1, sp, 24 instruction loads the

address of that location in the stack into x1 . This becomes the second argument to scanf .

Note that this local variable is uninitialized at the point it's passed to scanf - it will get filled

in with input from the command line.

Q7.6
2 Points

Recall that the return value of scanf is the number of format ("percent") directives that were

successfully matched by user input. What does the program do if the user provides no valid

input?

EXPLANATION

If the return value from scanf is not equal to 1, the bne instruction jumps to leave .

Q7.7
2 Points

After scanf returns but before the loop, where does the value the user entered eventually wind

up?

It doesn't have one

The value 24

An address in main 's stack frame

An address in some other function's stack frame, possibly intended to cause a buffer

overrun



The address of register x1

Behaves as if the user had typed in 0

Behaves as if the user had typed in 1

Uses an uninitialized value instead of user input

Crashes with a segmentation fault

Exits cleanly without printing anything

EXPLANATION

This is the purpose of the ldr w19, [sp,24] instruction - it loads the value that scanf placed

at the location whose address was passed as its second argument.

Q7.8
2 Points

What does the program do if the user types in the number 42?

EXPLANATION

The loop executes as long as w19 is positive, and decrements that value at the end of each

iteration.

Q7.9
2 Points

Suppose you change ble postLoop to beq postLoop . (The latter branches on "equal".) Now

what does the program do if the user types in the number -42?

w0

w1

w19

w20

Passed to printf

Prints 42

Prints the sum of 42 values returned by f

Enters an infinite loop

None of the above

Prints -42

Prints the negative of the sum of 42 values returned by f

Enters an infinite loop

None of the above

EXPLANATION

The loop will execute until x19 is decremented to the most negative 32-bit signed integer,

wraps around to the most positive signed int, and then eventually is decremented back to

0. This isn't an infinite loop, though it will take a long time.

Q8 No clever title, just arithmetic
9 Points

Suppose that registers x0 and x1 contain variables corresponding to type long , and we have

executed

cmp x0, x1

We now want to generate an AARCH64 machine language instruction that branches to

label1 if x0 < x1 .

Here is the layout of the conditional branch instruction:

and here is what the cond bits mean:

Q8.1
2 Points

The first thing we need to do is figure out the code for the condition we want. What bits should

go in cond in the instruction format?

EXPLANATION

We need a "signed less than", or blt instruction.

Q8.2
4 Points

Next, we need to figure out the offset to encode in the instruction. Suppose that the current

instruction is at address 0x204 and that label1 is at 0x1f4. What binary value should go in the

19-bit immediate (i.e., imm19) field of the instruction?

0000

0011

1001

1011

1101

Hint 1: Remember that all AARCH64 instructions must be located at addresses that are a

multiple of 4, so the conditional branch instruction saves space by not encoding the two least-

significant (rightmost) bits of the offset, which must be 0.

Hint 2: Unless you're proficient in two's complement arithmetic, consider doing the subtraction

and division before converting to binary.

EXPLANATION

The offset is negative 0x10, or -16 decimal. Dropping two bits means dividing by 4, giving

us -4. Finally, converting to two's complement gives us the 19-bit value above.

Q8.3
3 Points

What is the hex value of the byte at address 0x207? (Recall that the instruction starts at

address 0x204.) Hint: Consider endianness.

EXPLANATION

The full instruction is 0x54ffff8b. We are on a little-endian architecture, so the bytes are

stored in the order 0x8b, 0xff, 0xff, 0x54 at locations 0x204, 0x205, 0x206, and 0x207,

respectively.

Q9 Will this be on the test?
14 Points

1111 1111 1111 1111 000

1111 1111 1111 1111 011

1111 1111 1111 1111 100

1111 1111 1111 1111 101

1111 1111 1111 1111 110

1111 1111 1111 1111 111

0x45

0x54

0x63

0x8b

0xb8

None of the above

Here are several possible strategies for testing:

A Boundary Testing

B Field Testing

C Invariant Testing

D Path Testing

E Regression Testing

F Statement Testing

G Stress Testing

For each of the following descriptions, enter the letter corresponding to the type of testing

being described. You will use each letter exactly once.

Q9.1
2 Points

Beta testing by clients

B

EXPLANATION

All of these common terms are described in the testing lecture.

Q9.2
2 Points

Checking known relationships among state variables

C

Q9.3

2 Points

Executing every line of code

F

Q9.4
2 Points

Executing every possible combination of lines of code

D

Q9.5
2 Points

Running all the tests again after making any change to the code

E

Q9.6
2 Points

Using a large quantity of randomly generated input

G

Q9.7
2 Points

Using inputs likely to trigger corner cases

A

