
Create Rubric
85 points

 Create your rubric now or come back to it later. You can also make edits to your rubric while grading.

Q1

9 points

Q1.1 a

1 point  Rubric Settings

1 +1.0
Correct: neither an AO nor an ADT should reveal their inner
state representation, which would break encapsulation. For an
ADT, the representation is hidden by having in the interface
only a declaration, not a definition, of the structure whose fields
are the state. For an AO, the representation is hidden by making
the state variables static so that they are not visible outside the
file.

2 +0.0
The correct answer was "Neither": neither an AO nor an ADT
should reveal their inner state representation, which would break
encapsulation. For an ADT, the representation is hidden by
having in the interface only a declaration, not a definition, of the
structure whose fields are the state. For an AO, the
representation is hidden by making the state variables static so
that they are not visible outside the file.

 Add Rubric Item  Create Group  Import...

Q1.2 b

1 point  Rubric Settings

Q1.3 c

1 point  Rubric Settings

1 +1.0
Correct: the opaque pointer allows information hiding, because
the interface exposes a declaration not a definition of the state
struct and offers a pointer to that struct as the "handle" for
clients to indicate which instance they are manipulating. An AO,
on the other hand, does not have its state defined in the fields of
a structure.

2 +0.0
The correct answer was ADT: the ADT's interface file exposes a
declaration (but not a definition) of the state struct (allowing for
information hiding), and offers a pointer to that struct as the
"handle" for clients to indicate which instance they are
manipulating. An AO, however, does not have its state defined in
the fields of a structure.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: in an AO, there is only ever one instance so there is no
need for the clients to specify which instance they are
manipulating. In an ADT, though, there may be multiple

Q1.4 d

1 point  Rubric Settings

instances, so the interface functions take an instance pointer as an
argument to specify which instance they are manipulating.

2 +0.0
The correct answer was AO: in an AO, there is only ever one
instance so there is no need for the clients to specify which
instance they are manipulating. In an ADT, though, there may be
multiple instances, so the interface functions take an instance
pointer as an argument to specify which instance they are
manipulating.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: an ADT has a definition of the struct whose field are
its state, but typically does not have any global variables. An
AO, on the other hand, defines its internal state by a set of file-
scope static variables.

2 +0.0
The correct answer was AO. An ADT has a definition of the
function whose field are its state, but typically does not have any
global variables. An AO, on the other hand, defines its internal
state by a set of file-scope static variables.

 Add Rubric Item  Create Group  Import...

Q1.5 e

1 point  Rubric Settings

Q1.6 f

1 point  Rubric Settings

1 +1.0
Correct: an ADT has a definition of the struct whose fields are
its state, so in its constructor it can allocate enough space for one
of these struct s and return the pointer to the caller. An AO, on
the other hand, defines its internal state by a set of file-scope
static variables, for which there will always be only one copy of
each.

2 +0.0
The correct answer was ADT: an ADT has a definition of the
struct whose fields are its state, so in its constructor it can
allocate enough space for one of these struct s and return the
pointer to the caller. An AO, on the other hand, defines its
internal state by a set of file-scope static variables, for which
there will always be only one copy of each.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: decomment.c did not implement an object at all. It was
a program that simulated a DFA to do character processing.

Q1.7 g

1 point  Rubric Settings

Q1.8 h

1 point  Rubric Settings

2 +0.0
The correct answer was Neither: decomment.c did not
implement an object at all. It was a program that simulated a
DFA to do character processing.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: the module declared in str.h and implemented in str.c
did not implement an object at all. It was a stateless module of
functions that were passed strings as arguments but did not
define the type or "own" them.

2 +0.0
The correct answer was Neither: the module declared in str.h
and implemented in str.c did not implement an object at all. It
was a stateless module of functions that were passed strings as
arguments but did not define the type or "own" them.

 Add Rubric Item  Create Group  Import...

Q1.9 i

1 point  Rubric Settings

1 +1.0
Correct: the SymTable module was an ADT with an interface
defined by symtable.h and two different implementations,
symtablelist.c and symtablehash.c .

2 +0.0
The correct answer was ADT: the SymTable module was an
ADT with an interface defined by symtable.h and two different
implementations, symtablelist.c and symtablehash.c .

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: in A4 Part 2, dt.c implemented an AO for the directory
tree, with one of its state variables being a Node_T , which is an
opaque pointer type handle for the ADT defined in nodeDT.c .
(DynArray and Path were other ADTs used as part of a DT,
although these were shared across the AOs from all three parts
of A4.)

2 +1.0
The correct answer is Both: in A4 Part 2, you were right that
dt.c implemented an AO for the directory tree, but it did sowith
one of its state variables being a Node_T , which is an opaque
pointer type handle for the ADT defined in nodeDT.c that was
also provided for Part 2. (DynArray and Path were other ADTs
used as part of a DT, although these were shared across the AOs

Q2

4 points  Rubric Settings

from all three parts of A4.) We awarded credit for this answer
because we found it plausible that students interpreted "(DT)" as
dt.c ".

3 +0.0
The correct answer is Both: in A4 Part 2, dt.c implemented an
AO for the directory tree, with one of its state variables being a
Node_T , which is an opaque pointer type handle for the ADT
defined in nodeDT.c . (DynArray and Path were other ADTs
used as part of a DT, although these were shared across the AOs
from all three parts of A4.)

 Add Rubric Item  Create Group  Import...

1 +4.0
Correct: (char * (*) (void * , void *))

2 +3.0
The correct answer is: (char * (*) (void * , void *))
Partial credit was awarded for including components of the
correct answer.

3 +2.0
The correct answer is: (char * (*) (void * , void *))
Partial credit was awarded for including components of the
correct answer.

Q3

13 points

Q3.1 a

1 point  Rubric Settings

4 +1.0
The correct answer is: (char * (*) (void * , void *))
Partial credit was awarded for including components of the
correct answer.

5 +0.0
The correct answer is: (char * (*) (void * , void *)) .

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: two.h is not a target.

2 +0.0
The correct answer was None: two.h is not a target.

 Add Rubric Item  Create Group  Import...

Q3.2 b

1 point  Rubric Settings

Q3.3 c

2 points  Rubric Settings

1 +1.0
Correct: Only #B is executed, because the provided target is
specifically zero.o .

2 +0.0
The correct answer was only #B, because the provided target is
specifically zero.o , so the link into the final executable prog is
not attempted.

 Add Rubric Item  Create Group  Import...

1 +2.0
Correct: make with no arguments will try to build the first target
(prog). zero.o is already up to date after (b.), but the rest of the
.o files need to be built, then the linker must run to combine
them all into the final executable.

2 +1.0
The correct answer was ACDEF: make with no arguments will
try to build the first target (prog). zero.o is already up to date

Q3.4 d

1 point  Rubric Settings

after (b.), but the rest of the .o files need to be built, then the link
must run to combine them all into the final executable.

3 +0.0
The correct answer was ACDEF: make with no arguments will
try to build the first target (prog). zero.o is already up to date
after (b.), but the rest of the .o files need to be built, then the
linker must run to combine them all into the final executable.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: When we touch zero.c , the C source file is now newer
than its corresponding .o file, so when we make , zero.o must
be rebuilt, which will make it newer than prog , so prog must be
rebuilt as well.

2 +0.0
The correct answer was A and B: When we touch zero.c , the C
source file is now newer than its corresponding .o file, so when
we make , zero.o must be rebuilt, which will make it newer than
prog , so prog must be rebuilt.

 Add Rubric Item  Create Group  Import...

Q3.5 e

1 point  Rubric Settings

Q3.6 f

1 point  Rubric Settings

1 +1.0
Correct: no files have been updated since we last ran make in d. .

2 +0.0
The correct answer was None: no files have been updated since
we last ran make in d. .

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: two.h is a prerequisite for two.o , so when it becomes
newer than two.o the object file must be rebuilt. And after doing
so, when the object file is newer than the executable, the
executable also must be relinked.

2 +0.0
The correct answer was A and D: two.h is a prerequisite for
two.o , so when it becomes newer than two.o the object file
must be rebuilt. And after doing so, when the object file is newer
than the executable, the executable also must be relinked.

Q3.7 g

2 points  Rubric Settings

Q3.8 h

 Add Rubric Item  Create Group  Import...

1 +2.0
Correct: four.h is a prerequisite for {two,three,four}.o , so when
it becomes newer than those the object files must be rebuilt. And
after doing so, when the object files become newer than the
executable, the executable also must be relinked.

2 +1.0
The correct answer was ADEF: four.h is a prerequisite for
{two,three,four}.o , so when it becomes newer than those the
object files must be rebuilt. And after doing so, when the object
files become newer than the executable, the executable also must
be relinked.

3 +0.0
The correct answer was ADEF: four.h is a prerequisite for
{two,three,four}.o , so when it becomes newer than those the
object files must be rebuilt. And after doing so, when the object
files become newer than the executable, the executable also must
be relinked.

 Add Rubric Item  Create Group  Import...

1 point  Rubric Settings

Q3.9 i

1 point  Rubric Settings

1 +1.0
Correct: after touching the .o files, they are still newer than the
.c files, so they don't need to be rebuilt, but they are also now
newer than the executable, so it does need to be re-linked.

2 +0.0
The correct answer was only A: after touching the .o files, they
are still newer than the .c files, so they don't need to be rebuilt,
but they are also now newer than the executable, so it does need
to be re-linked.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: although one.o is removed, the make argument
specifies one specific target two.o , so it will never check if
one.o needs to be built. two.o itself is up-to-date.

2 +0.0
The correct answer was None: although one.o is removed, the
make argument specifies one specific target two.o , so it will
never check if one.o needs to be built. two.o itself is up-to-date.

Q3.10 j

1 point  Rubric Settings

Q3.11 k

1 point  Rubric Settings

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: after one.o was removed in the previous item but not
rebuilt because make was only tasked with rebuilding two.o (if
necessary, which it wasn't), one.o is still missing. Thus, this
invocation will rectify that and rebuild it, but only one.o (not re-
linking prog) since it was the specific target in the make
argument.

2 +0.0
The correct answer is only C: after one.o was removed in the
previous item but not rebuilt because make was only tasked
with rebuilding two.o (if necessary, which it wasn't), one.o is
still missing. Thus, this invocation will rectify that and rebuild
it, but only one.o (not re-linking prog) since it was the specific
target in the make argument.

 Add Rubric Item  Create Group  Import...

1 +1.0

Q4

6 points

Q4.1 a

2 points  Rubric Settings

Correct: after one.o was rebuilt in the previous item, all the .o files
are up to date but we have to relink prog because of the update to
one.o .

2 +0.0
The correct answer is only A: after one.o was rebuilt in the
previous item, all the .o files are up to date but we have to relink
prog because of the update to one.o .

 Add Rubric Item  Create Group  Import...

1 +2.0
Correct: Arrays' elements are stored at memory addresses in
increasing order. Thus, starting at the address of auc , the two
bytes are 0x01 and 0x03. A short is a multibyte construct, so to
interpret this data as a short we need to account for endianness.
On a little-endian machine, the byte with the least significant
bits is stored first, so that means that 0x01 is the lower order
byte and 0x03 is the higher order byte. The value 0x0301 is
(, or, equivalently in binary 0000001100000001:

). The value should be printed in base 10 as
noted in the problem regarding the %hd specifier.

769
3 ∗ 256 + 1
= 512 + 256 + 1

Q4.2 b

2 points  Rubric Settings

2 +1.0
Arrays' elements are stored at memory addresses in increasing
order. Thus, starting at the address of auc , the two bytes are
0x01 and 0x03. A short is a multibyte construct, so to interpret
this data as a short we need to account for endianness. On a
little-endian machine, the byte with the least significant bits is
stored first, so that means that 0x01 is the lower order byte and
0x03 is the higher order byte. The value 0x0301 is (

, or, equivalently in binary 0000001100000001:
). The value should be printed in base 10 as

noted in the problem regarding the %hd specifier.

769
3 ∗ 256 + 1
= 512 + 256 + 1

3 +0.0
Arrays' elements are stored at memory addresses in increasing
order. Thus, starting at the address of auc , the two bytes are
0x01 and 0x03. A short is a multibyte construct, so to interpret
this data as a short we need to account for endianness. On a
little-endian machine, the byte with the least significant bits is
stored first, so that means that 0x01 is the lower order byte and
0x03 is the higher order byte. The value 0x0301 is (

, or, equivalently in binary 0000001100000001:
). The value should be printed in base 10 as

noted in the problem regarding the %hd specifier.

769
3 ∗ 256 + 1
= 512 + 256 + 1

 Add Rubric Item  Create Group  Import...

1 +2.0

Correct: Arrays' elements are stored at memory addresses in
increasing order. Thus, starting at the address of auc , the two bytes
are 0x01 and 0x03. A short is a multibyte construct, so to interpret
this data as a short we need to account for endianness. On a big-
endian machine, the byte with the most significant bits is stored first,
so that means that 0x03 is the lower order byte and 0x01 is the higher
order byte. The value 0x0103 is (, or,
equivalently in binary 0000000100000011). The value should be
printed in base 10 as noted in the problem regarding the %hd
specifier.

259 256 + 2 + 1

2 +1.0
Arrays' elements are stored at memory addresses in increasing
order. Thus, starting at the address of auc , the two bytes are
0x01 and 0x03. A short is a multibyte construct, so to interpret
this data as a short we need to account for endianness. On a big-
endian machine, the byte with the most significant bits is stored
first, so that means that 0x03 is the lower order byte and 0x01 is
the higher order byte. The value 0x0103 is (,
or, equivalently in binary 0000000100000011). The value should
be printed in base 10 as noted in the problem regarding the %hd
specifier.

259 256 + 2 + 1

3 +0.0
Arrays' elements are stored at memory addresses in increasing
order. Thus, starting at the address of auc , the two bytes are
0x01 and 0x03. A short is a multibyte construct, so to interpret
this data as a short we need to account for endianness. On a big-
endian machine, the byte with the most significant bits is stored
first, so that means that 0x03 is the lower order byte and 0x01 is
the higher order byte. The value 0x0103 is (,
or, equivalently in binary 0000000100000011). The value should
be printed in base 10 as noted in the problem regarding the %hd
specifier.

259 256 + 2 + 1

 Add Rubric Item  Create Group  Import...

Q4.3 c

2 points  Rubric Settings

Q5

8 points  Rubric Settings

1 +2.0
Correct: Arrays' elements are stored at memory addresses in
increasing order. Thus, if we point s at the same thing auc
points to and read 1 byte, that's identical to reading auc[0] ,
which is 1. The %hd specifier was noted in the problem to print
this value in base 10.

2 +1.0
1 is correct, but this answer gives it in the wrong format: Arrays'
elements are stored at memory addresses in increasing order.
Thus, if we point s at the same thing auc points to and read 1
byte, that's identical to reading auc[0] , which is 1. The %hd
specifier was noted in the problem to print this value in base 10.

3 +0.0
The correct answer is 1: Arrays' elements are stored at memory
addresses in increasing order. Thus, if we point s at the same
thing auc points to and read 1 byte, that's identical to reading
auc[0] , which is 1. The %hd specifier was noted in the problem
to print this value in base 10.

 Add Rubric Item  Create Group  Import...

1 +1.0
1 point was earned having demonstrated calculating the offset in
a procedurally correct way, but with an arithmetic error
(typically producing 0x3090 instead of 0x30F0 as though the
subtraction was done in decimal rather than hex, or 0x3000 by
borrowing incorrectly)

2 +2.0
2 points were earned for: algorithms we could not recognize but
that produced an instruction with the given opcode bits or the
correct register, or having demonstrated calculating the correct
offset or the correct offset except with the order of subtraction
reversed.

3 +3.0
3 points were earned for: incorrect algorithms we could
recognize that were then compounded with additional mistakes
in execution, or algorithms we could not recognize but that
produced an instruction with the given opcode bits and the
correct register.

4 +4.0
4 points were earned for an incorrect algorithm (>>3 perhaps
trying to get to 21 bits from the 24 bits inferred from the result
of a 6-hexit subtraction) that was subequently executed
perfectly.

5 +5.0
5 points were earned for using the correct algorithm executed
perfectly (possibly after incorrect hex subtraction), but flipping
the bits or bytes of the answer in an unnecessary and incorrect
way.

Q6

18 points

Q6.1 a-i

1 point  Rubric Settings

6 +6.0
6 points were earned for an incorrect algorithm (>>2 like with
b , which is wrong because unlike with b we don't know that
the target of an ADR is an instruction and thus 4-byte aligned)
that was subsequently executed perfectly.

7 +7.0
7 points were earned for a correct algorithm that was executed
perfectly ... after having done incorrect hex subtraction to
compute the displacement, either by subtracting in the wrong
order or making an arithmetic error. (The correct displacement
calculation is: 0x217217 - 0x214127 = 0x30F0)

8 +8.0
Correct!

9 +0.0
No credit earned. We could not determine that this response
encoded the 0ii1 0000 in the first 8 bits, nor encoded the register
in the rightmost five bits, nor calculated the correct offset.

 Add Rubric Item  Create Group  Import...

Q6.2 a-ii

1 point  Rubric Settings

1 +1.0
Correct: this is a function declaration, just like we would
normally put in our header file. It tells the compiler that there is
a function with that name and signature, but does not define
(give the implementation for) the function. The definition for
this function appears in file2.c .

2 +0.0
The correct answer is Other Declaration: this is a function
declaration, just like we would normally put in our header file. It
tells the compiler that there is a function with that name and
signature, but does not define (give the implementation for) the
function. The definition for this function appears in file2.c .

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: this is the definition of file1.c 's internally-linked
(because of the static keyword) file-scope variable i . It will be
placed in the BSS section, where it will assume the value 0 at
runtime.

2 +0.0
The correct answer is Definition: this is the definition of file1.c 's
internally-linked (because of the static keyword) file-scope

Q6.3 a-iii

1 point  Rubric Settings

Q6.4 a-iv

1 point  Rubric Settings

variable i . It will be placed in the BSS section, where it will assu
the value 0 at runtime.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: this isn't a declaration at all, it's a function call.

2 +0.0
The correct answer was "Neither or Error": this isn't a
declaration at all, it's a function call

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: this is a declaration, but not a definition. The extern
keyword on a global variable indicates to the compiler that there
exists (somwhere) an externally linked definition for this
variable name, so that the compiler can generate assembly

Q6.5 a-v

1 point  Rubric Settings

language code from the C statements using that variable. The
definition for this variable is at Line 7 in file3.c .

2 +0.0
The correct answer is Other Declaration: this is a declaration,
but not a definition. The extern keyword on a global variable
indicates to the compiler that there exists (somwhere) an
externally linked definition for this variable name, so that the
compiler can generate assembly language code from the C
statements using that variable. The definition for this variable is
at Line 7 in file3.c .

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: this is the definition of the externally-linked variable i
that is used in files 2 and 3. (It is shadowed by the internally-
linked i in file1.c)

2 +0.0
The correct answer is Definition: this is the definition of the
externally-linked variable i that is used in files 2 and 3. (It is
shadowed by the internally-linked i in file1.c)

 Add Rubric Item  Create Group  Import...

Q6.6 a-vi

1 point  Rubric Settings

Q6.7 b

1 point  Rubric Settings

1 +1.0
Correct: this is a declaration, but not a definition. The extern
keyword on a global variable indicates to the compiler that there
exists (somwhere, not necessarily in another file!) an externally
linked definition for this variable name. In this case, that
definition exists ... on the previous line.

2 +0.0
The correct answer is Other Declaration: this is a declaration,
but not a definition. The extern keyword on a global variable
indicates to the compiler that there exists (somwhere, not
necessarily in another file!) an externally linked definition for
this variable name. In this case, that definition exists ... on the
previous line.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: static int i is a file-scope variable, thus it has process
duration, and thus it goes in BSS if not given an explicit
initialization.

2 +0.0

Q6.8 c

1 point  Rubric Settings

Q6.9 d

1 point  Rubric Settings

The correct answer was the BSS section: static int i is a file-scope
variable, thus it has process duration, and thus it goes in BSS if not
given an explicit initialization.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: on line 5, the declaration indicates to the compiler that
there exists an externally linked definition of i in some file. The
definition is the one at line 7 in file 3.h, which is a a file-scope
variable, thus it has process duration, and thus it goes in DATA
because it is given an explicit initialization in the definition.

2 +0.0
The correct answer is the DATA section: on line 5, the
declaration indicates to the compiler that there exists an
externally linked definition of i in some file. The definition is the
one at line 7 in file 3.h, which is a a file-scope variable, thus it
has process duration, and thus it goes in DATA because it is
given an explicit initialization in the definition.

 Add Rubric Item  Create Group  Import...

Q6.10 e

1 point  Rubric Settings

1 +1.0
Correct: Line 7 is a definition of a file-scope variable, thus it has
process duration, and thus it goes in DATA because it is given an
explicit initialization in the definition.

2 +0.0
The correct answer is the Data section: Line 7 is a definition of
a file-scope variable, thus it has process duration, and thus it
goes in DATA because it is given an explicit initialization in the
definition.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: In file1.c the variable i is that file's internally-linked
one from line 2. Because it is a Process Duration variable that
was not initialized, it is placed in the BSS section and assumes
the value 0 at runtime. Uninitialized Temporary Duration
variables are the ones that keep whatever previous value existed
in memory.

2 +0.0
The correct answer is 0: In file1.c the variable i is that file's
internally-linked one from line 2, which shadows the externally
linked i defined in file3.c . Because it is a Process Duration
variable that was not initialized, it is placed in the BSS section
and assumes the value 0 at runtime. Uninitialized Temporary

Q6.11 f

1 point  Rubric Settings

Q6.12 g-i

1 point  Rubric Settings

Duration variables are the ones that keep whatever previous valu
existed in memory.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: in file2.c the variable i is the one declared on Line 5,
but that variable is the one defined on line 7.

2 +0.0
The correct answer is "always the one defined in file3.c ": in
file2.c the variable i is the one declared on Line 5, but that
variable is the one defined on line 7. The context of where the
function was called from makes no difference on the variable
appearing in the function body (unlike, say, if i had been a
parameter of the function)

 Add Rubric Item  Create Group  Import...

Q6.13 g-ii

1 point  Rubric Settings

1 +1.0
Correct: the function declaration shows the compiler the
function signature for printI so that the compiler can typecheck
any function calls of that function and generate the appropriate
assembly instructions to prepare arguments and make the
function call.

2 +0.0
The function declaration shows the compiler the function
signature for printI so that the compiler can typecheck any
function calls of that function and generate the appropriate
assembly instructions to prepare arguments and make the
function call.

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: the compiler translates from C to assembly, adding
labels for global variables, functions, and branch targets.

2 +0.0
The compiler translates from C to assembly, adding labels for
global variables, functions, and branch targets.

 Add Rubric Item  Create Group  Import...

Q6.14 g-iii

1 point  Rubric Settings

Q6.15 g-iv

1 point  Rubric Settings

1 +1.0
Correct: the assembler translates from assembly language to
machine language, replacing the compiler's labels with memory
section offsets (relative to its own file only).

2 +0.0
The assembler translates from assembly language to machine
language, replacing the compiler's labels with memory section
offsets (relative to its own file only).

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: the preprocessor handles \#include directives, which
take declarations from header files and prepend them to the C
code in order to give the compiler the information about the
declared functions.

2 +0.0

Q6.16 g-v

1 point  Rubric Settings

The preprocessor handles \#include directives, which take
declarations from header files and prepend them to the C code in
order to give the compiler the information about the declared
functions. (The linker adds function definitions, i.e., machine code of
their implementation, but not declarations to be used earlier in the
build process.)

 Add Rubric Item  Create Group  Import...

1 +1.0
Correct: similar to part g.i of this question, the function
declaration shows the compiler the type of i so that the
compiler can generate the appropriate assembly instructions to
manipulate it. Without this line, the compiler would interpret i to
be an undeclared (presumably local) variable within printI .

2 +0.0
The correct answer is the compiler. Similar to part g.i of this
question, the function declaration shows the compiler the type of
i so that the compiler can generate the appropriate assembly
instructions to manipulate it. Without this line, the compiler
would interpret i to be an undeclared (presumably local) variable
within printI .

 Add Rubric Item  Create Group  Import...

Q6.17 g-vi

2 points  Rubric Settings

1 +2.0
Correct: The assembler can produce a finalized machine code
instruction for a branch within a single file's TEXT section: the
difference between two offsets in the same TEXT section will be
the same as the difference between their two final addresses. The
assembler cannot (and thus will produce a relocation record for
the linker to patch and finalize) when the branch is to a location
defined in another file (e.g. a function call from a client to a
module or to the standard library).

2 +1.0
The assembler can produce a finalized machine code instruction
for a branch within a single file's TEXT section: the difference
between two offsets in the same TEXT section will be the same
as the difference between their two final addresses. The
assembler cannot (and thus will produce a relocation record for
the linker to patch and finalize) when the branch is to a location
defined in another file (e.g. a function call from a client to a
module or to the standard library).

3 +0.0
The assembler can produce a finalized machine code instruction
for a branch within a single file's TEXT section: the difference
between two offsets in the same TEXT section will be the same
as the difference between their two final addresses. The
assembler cannot (and thus will produce a relocation record for
the linker to patch and finalize) when the branch is to a location
defined in another file (e.g. a function call from a client to a
module or to the standard library).

 Add Rubric Item  Create Group  Import...

Q7

12 points

Q7.1 first four

4 points  Rubric Settings

1 +4.0
BDGI was the intended answer for this problem, but pulling the
FT_getFileContents call out of the same conditional structure
(BGID and DBGI) also works.

2 +3.0
This answer had the right four lines, but their order doesn't
work. (The most common instance of this is BDIG: this puts an
else clause in the middle of the block, which is syntactically
incorrect.)

3 +3.0
This answer had three of the four lines correct and in the right
place in the sequence, but the fourth line was incorrect.

4 +2.0
This answer had two correct pieces and two incorrect pieces
(e.g. wrong line or lines in wrong order)

5 +1.0
1 point of partial credit earned.

Q7.2 last eight

8 points  Rubric Settings

6 +0.0
No points earned.

 Add Rubric Item  Create Group  Import...

1 +8.0
Correct: ACEJGFHK is the correct sequence to loop over the
indices, checking at each index if there is a mismatch (in which
case, print the error message and return FALSE) , and returning
true if we reach the end of both strings with a match.

2 +6.0
ACEJGFHK is the correct sequence to loop over the indices,
checking at each index if there is a mismatch (in which case,
print the error message and return FALSE) , and returning true if
we reach the end of both strings with a match.

3 +5.0
ACEJGFHK is the correct sequence to loop over the indices,
checking at each index if there is a mismatch (in which case,
print the error message and return FALSE) , and returning true if
we reach the end of both strings with a match.

4 +3.0

Q8

15 points

Q8.1 a

5 points  Rubric Settings

ACEJGFHK is the correct sequence to loop over the indices,
checking at each index if there is a mismatch (in which case, print the
error message and return FALSE) , and returning true if we reach the
end of both strings with a match.

5 +0.0
ACEJGFHK is the correct sequence to loop over the indices,
checking at each index if there is a mismatch (in which case,
print the error message and return FALSE) , and returning true if
we reach the end of both strings with a match.

 Add Rubric Item  Create Group  Import...

1 +5.0
Correct

2 +1.0
Flip conditional correctly

3 +1.0

Q8.2 b

2 points  Rubric Settings

Goto "else clause" (skip "then clause")

4 +1.0
Goto at end of "then clause" to "After" label (skip "else clause")
+ "After" label

5 +1.0
"else clause" label

6 +1.0
Statements unchanged from C code

7 +0.0
Answer Left Blank

 Add Rubric Item  Create Group  Import...

1 +2.0
Correct

2 +1.0

Q8.3 c

2 points  Rubric Settings

Q8.4 d

2 points  Rubric Settings

1 point of partial credit was earned.

3 +0.0
Incorrect

 Add Rubric Item  Create Group  Import...

1 +2.0
Correct

2 +1.0
1 point of partial credit was earned.

3 +0.0
Incorrect

 Add Rubric Item  Create Group  Import...

Q8.5 e

2 points  Rubric Settings

1 +2.0
Correct

2 +1.0
1 point of partial credit was earned.

3 +0.0
Incorrect

 Add Rubric Item  Create Group  Import...

1 +2.0
Correct line and correct reason

2 +1.0
1 point of partial credit was earned for the correct line but wrong
reason or no reason

3 +0.0
Incorrect

Q8.6 f

2 points  Rubric Settings

 Add Rubric Item  Create Group  Import...

1 +2.0
Correct

2 +1.0
1 point of partial credit was earned.

3 +0.0
Incorrect

 Add Rubric Item  Create Group  Import...

