
Q1 Instructions and Pledge
1 Point

This exam consists of 8 multi-part questions (plus the pledge), and you have 3 hours — budget

your time wisely. This is a closed-book, closed-note exam, and "cheat sheets" are not allowed.

During the exam you must not refer to the textbook, course materials, notes, or any information

on the Internet other than the FAQ and AARCH64 reference linked below. You may not compile

or run any code on armlab or any other machine. You may use blank paper as scratch space,

but you must enter your answer in the online system in order to receive credit. You are not

allowed to communicate with any other person, whether inside or outside the class. You may

not send the exam problems to anyone, nor receive them from anyone, nor communicate any

information about the problems or their topics.

If you have questions about the wording of some problem, please refer to the FAQ at the

following URL:
https://docs.google.com/document/d/e/2PACX-

1vQ3tv6HDlQ6H�JE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg

/pub

You may also post a private message on Ed, but we only guarantee that we'll be available

during the following hours:

• Friday, 12/17, 12:00 noon – 10:00 PM EST

• Saturday, 12/18, 7:00 PM – 10:00 PM EST

• Sunday, 12/19, 7:00 PM – 10:00 PM EST

• Monday, 12/20, 10:00 AM – 10:00 PM EST

This examination is administered under the Princeton University Honor Code, and by signing

the pledge below you promise that you have adhered to the instructions above. Please type

out the Honor Code pledge exactly as follows, including this exact spelling and punctuation:

I pledge my honor that I have not violated the Honor Code during this examination.

I pledge my honor that I have not
violated the Honor Code during this
examination.

Now type your name as a signature confirming that you have adhered to the Honor Code:

Your signature here.

Q2 C and Assembly Mix 'n Match
4 Points

https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
Christopher Moretti
Exam Statistics:

Min: 27/61
Median: 53/61
Max: 61/61

Mean: 51.25/61
StdDev: 7.66/61

Low Scoring ?s:

5.2 - 53%
4.2 - 57%
4.4 - 57%
4.3 - 74%
7.2 - 75%
8.9 - 77%
5.3 - 78%

Many questions
scored >95%�

For this and the following questions, please refer to the AARCH64 quick reference at the

following URL (same as the FAQ):

https://docs.google.com/document/d/e/2PACX-

1vQ3tv6HDlQ6H�JE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg

/pub

Please note: this is the only outside reference to which you are allowed to refer during the

exam. Attempting to access any other information is a violation of the honor code.

Now study the following four simple functions - two in AARCH64 assembly language and two in

C:

a:

 cbz w1, a_1

 udiv w0, w0, w1

a_1:

 ret

b:

 ret

unsigned int c(unsigned int x, unsigned int y)

{

if (y < x)

return y;

else

return x;

}

unsigned int d(unsigned int x, unsigned int y)

{

return x * y;

}

For each of the following unknown functions, select which of the functions above (a-d) has the

same effect.

Q2.1
1 Point

e:

 cmp w0, w1

 bhs e_1

 ret

https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://docs.google.com/document/d/e/2PACX-1vQ3tv6HDlQ6HfhJE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg/pub
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

e_1:

 mov w0, w1

 ret

EXPLANATION

If the first argument is >= the second argument, we skip to e_1 and therefore return the

second argument. Otherwise, we return the first argument. Comparing to function c(), we

see that there is a difference in logic, but only if the arguments are equal. Therefore, this

code has the same effect as c().

Q2.2
1 Point

f:

 mov w2, 0

 cbnz w1, f_1

 ret

f_1:

 subs w0, w0, w1

 blo f_2 // Hint: branches if w0 < w1

 add w2, w2, 1

 b f_1

f_2:

 mov w0, w2

 ret

EXPLANATION

The code repeatedly subtracts the second argument from the first, until the first argument is

smaller than the second. It returns the number of times the loop executed. We recognize this

as an implementation of (unsigned) integer division, the same as function a. Note that both a

and f immediately return if we attempt to divide by zero.

Same effect as function a

Same effect as function b

Same effect as function c

Same effect as function d

Same effect as function a

Same effect as function b

Same effect as function c

Same effect as function d

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

Q2.3
1 Point

g:

 mov w2, w0

 mov w0, wzr

 cbnz w1, g_1

 ret

g_1:

 add w0, w0, w2

 sub w1, w1, 1

 cbnz w1, g_1

 ret

EXPLANATION

This is, in some ways, the opposite of f: we add the first argument to itself, with the number

of iterations given by the second argument. This is a multiplication, just like function d()

Q2.4
1 Point

h:

 sub sp, sp, 16

 str x30, [sp]

 str w0, [sp,8]

 str w1, [sp,12]

 add w0, w0, w1

 ldr w1, [sp,12]

 sub w0, w0, w1

 ldr x30, [sp]

 add sp, sp, 16

 ret

Same effect as function a

Same effect as function b

Same effect as function c

Same effect as function d

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

This is a roundabout way of doing nothing. We allocate a stack frame; save x30, w0, and w1

onto it; add w1 to w0; load w1 with the saved w1; subtract w1 from w0; and clean up the

stack. The net effect is that no registers were changed, and there were no side effects. We

might as well have skipped everything except the ret.

Q3 GCD and LCM
9 Points

In precept, you saw both the C and assembly language code to calculate the GCD (Greatest

Common Divisor) of two integers using Euclid's algorithm.

Here is a mildly-edited version of the assembly language code:

1 MISSING .SECTION DIRECTIVE

2 promptStr:

3 .string "Enter an integer: "

4 scanfFormatStr:

5 .string "%ld"

6 printfFormatStr:

7 .string "The gcd is %ld\n"

//--

// Return the greatest common divisor of lFirst and lSecond.

// long gcd(long lFirst, long lSecond)

//--

8 .equ GCD_STACK_BYTECOUNT, 48

9 .equ LABSSECOND, 8

10 .equ LABSFIRST, 16

11 .equ LTEMP, 24

12 .equ LSECOND, 32

13 .equ LFIRST, 40

14 .section .text

15 .global gcd

 gcd:

16 sub sp, sp, GCD_STACK_BYTECOUNT

17 str x30, [sp]

18 str x0, [sp, LFIRST]

Same effect as function a

Same effect as function b

Same effect as function c

Same effect as function d

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

19 str x1, [sp, LSECOND]

20 ldr x0, [sp, LFIRST]

21 bl labs

22 str x0, [sp, LABSFIRST]

23 ldr x0, [sp, LSECOND]

24 bl labs

25 str x0, [sp, LABSSECOND]

 gcdLoop:

26 ldr x0, [sp, LABSSECOND]

27 cmp x0, 0

28 beq gcdLoopEnd

29 ldr x0, [sp, LABSFIRST]

30 ldr x1, [sp, LABSSECOND]

31 sdiv x2, x0, x1

32 mul x3, x2, x1

33 sub x4, x0, x3

34 str x4, [sp, LTEMP]

35 ldr x0, [sp, LABSSECOND]

36 str x0, [sp, LABSFIRST]

37 ldr x0, [sp, LTEMP]

38 str x0, [sp, LABSSECOND]

39 b gcdLoop

 gcdLoopEnd:

40 ldr x0, [sp, LABSFIRST]

41 ldr x30, [sp]

42 add sp, sp, GCD_STACK_BYTECOUNT

43 ret

Q3.1
1 Point

At line 1 of this code, there is a missing .section directive. What should it be? If multiple options

are valid, select the one that best corresponds to idiomatic C code like we've modeled in

precept exercises.

.section .bss

.section .data

.section .rodata

.section .stack

.section .text

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

This section contains strings that are passed to printf() and scanf(). While it is possible that

they were allocated as (read-write) arrays, it is much more likely that they were string literals

in the C code. Therefore, the most likely explanation is that this is the RODATA section.

Q3.2
1 Point

Turning to the gcd function itself, it appears that most of the comments are missing. Referring to

the line numbers above, where would you insert each of the following comments? Note that

a comment should describe the block of code that follows it, which should include all loads of

variables, computation, stores of results, etc.

// Prolog

EXPLANATION

The prolog contains all the code to set up the stack frame and save necessary registers

onto it.

Q3.3
1 Point

// lAbsFirst = labs(lFirst)

Before line 1

Before line 16

Before line 17

Before line 18

Before line 20

Before line 18

Before line 20

Before line 21

Before line 22

Before line 29

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

While the actual call to labs() is on line 21, line 20 loads lFirst into x0, where it will be used as

the argument to labs(). Then, line 22 stores the result into lAbsFirst.

Q3.4
1 Point

// lTemp = lAbsFirst % lAbsSecond

EXPLANATION

Again, the actual modulo computation is on lines 31-33, but line 29 begins the process of

loading the variables used in the calculation.

Q3.5
1 Point

// lAbsFirst = lAbsSecond

EXPLANATION

Lines 35 and 36 correspond to this code.

Q3.6
1 Point

// Epilog and return lAbsFirst

Before line 29

Before line 31

Before line 34

Before line 35

Before line 37

Before line 29

Before line 30

Before line 35

Before line 36

Before line 38

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

The epilog consists of loading the return address and cleaning up the stack frame (lines

41-42), but line 40 loads lAbsFirst into x0 to serve as the return value.

Q3.7
1 Point

We now want to use the gcd code in the computation of the LCM (Least Common Multiple),

using the formula

.

Here is AARCH64 assembly language code to do the calculation:

//--

// Return the lowest common multiple of lFirst and lSecond.

// long lcm(long lFirst, long lSecond)

//--

1 .equ LCM_STACK_BYTECOUNT, 48

2 LLCM .req x23

3 LGCD .req x22

4 LPROD .req x21

5 LSECOND .req x20

6 LFIRST .req x19

7 .section .text

8 .global lcm

 lcm:

// Prolog

9 sub sp, sp, LCM_STACK_BYTECOUNT

10 str x30, [sp]

11 str x19, [sp, 8]

12 str x20, [sp, 16]

13 str x21, [sp, 24]

14 str x22, [sp, 32]

15 str x23, [sp, 40]

// Store parameters in registers

16 mov LFIRST, x0

17 mov LSECOND, x1

Before line 36

Before line 40

Before line 41

Before line 42

Before line 43

lcm(i, j) = i ∗ j/gcd(i, j)

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

// MISSING COMMENT #1

18 bl gcd

19 mov LGCD, x0

// lProd = lFirst * lSecond;

20 MISSING INSTRUCTION

// MISSING COMMENT #2

21 sdiv LLCM, LPROD, LGCD

// Epilog and return lAbsFirst

22 mov x0, LLCM

23 ldr x30, [sp]

24 ldr x19, [sp, 8]

25 ldr x20, [sp, 16]

26 ldr x21, [sp, 24]

27 ldr x22, [sp, 32]

28 ldr x23, [sp, 40]

29 add sp, sp, LCM_STACK_BYTECOUNT

30 ret

There is a missing comment (#1) before line 18. What should it read to correspond to the

probable flattened C code from which the assembly language was generated?

EXPLANATION

Even though lines 16 and 17 stored lFirst and lSecond into registers x19 and x20, copies of

those arguments still exist in x0 and x1, which is where gcd() expects to find them. Therefore,

we can simply call gcd (line 18) and store the result in x22 (line 19) to implement the above

code.

Q3.8
1 Point

There is a missing instruction on line 20. What should it read?

gcd();

gcd(lGcd);

lGcd = gcd();

lGcd = gcd(x0, x1);

lGcd = gcd(lFirst, lSecond);

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

For the mul instruction, the destination register is the first operand, followed by the two

source registers.

Q3.9
1 Point

There is a missing comment (#2) before line 21. What should it read to correspond to the

probable flattened C code from which the assembly language was generated?

EXPLANATION

Again, the destination of the sdiv (signed integer division) instruction comes first, so we

need to divide lProd by lGcd and store the results in lLcm.

Q4 I thought we were done with questions about strcpy...
12 Points

Recall that the C standard library's strcpy function copies a string to a destination from a

source, and returns the address of the destination string:

char *strcpy(char *dest, const char *src);

In Assignment 2, you wrote two C implementations of Str_copy , which was intended to mimic

strcpy . One implementation accessed elements of the source and destination strings by index,

mul LPROD, LFIRST, LSECOND

mul LFIRST, LSECOND, LPROD

mul LPROD, x0, x1

mul x0, x1, LPROD

mul LPROD, [sp,8], [sp,16]

mul [sp,8], [sp,16], LPROD

// lLcm = lGcd / lProd;

// lLcm = lProd / lGcd;

// lLcm = sdiv();

// lGcd = lProd / lLcm;

// lGcd = sdiv();

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

changing the index to iterate through the string, while the other implementation accessed

elements of the source and destination strings by pointer dereference, and moved the pointer

to iterate through the string.

In this problem, you will do the same thing, except in AARCH64 assembly language. You will

write both the index-iterating version, strcpyi , and the pointer-iterating version, strcpyp . To get

started, you will first complete the flattened C code for the two functions. You can then compose

your assembly by translating your flattened C code; however, you are not required to comment

your assembly code with the flattened C statements. Also, recall that the assert validation in the

C code does not get translated into assembly.

Your assembly functions should not use either the stack or callee-saved registers to store local

variables or saved parameters, but instead do all their work using the caller-saved scratch

registers. And since your functions will not call any other functions, they do not need to save

x30, and thus do not need to manage a stack frame at all in a prolog or epilog.

Note: each implementation can be completed in about a dozen lines of code or less. If you are

writing considerably more than that, you may be off on the wrong track.

Q4.1
2 Points

/* Copy string from src to dest using index iteration. Return dest. */

char *strcpyi(char *dest, const char *src) {

 assert(dest != NULL);

 assert(src != NULL);

}

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

Sample implementation:

size_t ind = 0;

loop:

 dest[ind] = src[ind];

 if (src[ind] == '\0') goto endloop;

 ind++;

 goto loop;

endloop:

 return dest;

Many alternatives are possible. Here are three common variations:

• returning dest directly from the if statement instead of having an endloop section;

• checking for '\0' before rather than after the assignment, then doing the final '\0'

assignment separately after jumping to endloop;

• doing the assignment in the conditional, using the C idioms that assignment returns the

value assigned and '\0' (aka ASCII 0) evaluates as FALSE

Q4.2
4 Points

Hint: use the register+register addressing mode.

// Copy string from src to dest using index iteration. Return dest.

// char *strcpyi(char *dest, const char *src)

 .global strcpyi

strcpyi:

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

Sample implementation:

DEST .req x0

SRC .req x1

IND .req x2

C .req w3

mov IND, 0

loop:

ldrb C, [SRC,IND]

strb C, [DEST,IND]

cmp C, wzr

beq endloop

add IND, IND, 1

b loop

endloop:

ret // dest still in x0

Many other code sequences are possible, but it's important to keep in mind that dest (which

started out in x0) needs to still be in x0 when the function returns. It is possible to write this

code without using the register+register addressing mode, but doing so would require

additional instructions to do the addition "by hand".

Q4.3
2 Points

/* Copy string from src to dest using pointer iteration. Return dest. */

char *strcpyp(char *dest, const char *src) {

 assert(dest != NULL);

 assert(src != NULL);

}

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

Sample implementation:

char *curr = dest;

loop:

 *curr = *src;

 if (*src == '\0') goto endloop;

 curr++;

 src++;

 goto loop;

endloop:

 return dest;

Q4.4
4 Points

// Copy string from src to dest using pointer iteration. Return dest.

// char *strcpyp(char *dest, const char *src)

 .global strcpyp

strcpyp:

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

Sample implementation:

SRC .req x1

CURR .req x2

C .req w3

mov CURR, x0

loop:

ldrb C, [SRC]

strb C, [CURR]

cmp C, wzr

beq endloop

add CURR, CURR, 1

add SRC, SRC, 1

b loop

endloop:

ret // unmodified dest still in x0

Many other code sequences are possible, but it's important to keep in mind that the original

dest (which started out in x0) needs to still be in x0 when the function returns. This can be

done by copying x0 to another register, and then either incrementing that copy in the loop,

or incrementing x0 and then restoring it after the loop.

Q5 Disassembly and Bit-Twiddling
10 Points

You are writing a disassembler: a program that takes AARCH64 machine language instructions

and translates them into AARCH64 assembly language. One of the functions you need to write

is

unsigned int getField(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits);

to extract each field in the instruction. Its arguments are:

uiSrc : a machine-language instruction, represented as a 32-bit unsigned value;

uiStartBit : indicates the location in uiSrc of the least-significant bit of the field, where

uiStartBit == 0 refers to the least-significant bit of uiSrc ;

uiNumBits : the number of bits in the desired field.

For example, to get the second source register in an ADD instruction, which has the format

below, we would call getField(uiSrc, 16, 5) , since the second source register Rm is in a 5-bit

field starting at bit 16.

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

Q5.1
2 Points

What is the value, in decimal, returned by a call to getField(0x8B130280, 16, 5) ? Hint: if you're

thinking about endianness, you're overthinking what is necessary to solve this problem.

19

EXPLANATION

We want bits 16 through 20, inclusive, counting from the right. The hex digit "3" corresponds

to bits 16 through 19, while bit 20 is the rightmost bit of the "1". So, we have 10011 binary, or

19 decimal.

Q5.2
1 Point

The following are some attempts to implement getField() , not all of which are successful. For

each one, determine whether it works correctly for all valid inputs, or whether it is buggy. You

should consider only valid calls to getField() — i.e., you should assume that

uiStartBit + uiNumBits <= 32 . Hint: the right-shift operator >> , when applied to an

unsigned int , performs a logical right shift that fills in on the left with "0" bits.

unsigned int getField1(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

{

 uiSrc << (32 - (uiStartBit + uiNumBits));

 uiSrc >> (32 - (uiStartBit + uiNumBits));

 uiSrc >> uiStartBit;

return uiSrc;

}

EXPLANATION

We keep shifting uiSrc, but never store the shifted result anywhere.

Correct

Buggy

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

Q5.3
1 Point

unsigned int getField2(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

{

 uiSrc = uiSrc << (32 - (uiStartBit + uiNumBits));

 uiSrc = uiSrc >> (32 - uiNumBits);

return uiSrc;

}

EXPLANATION

This first shifts uiSrc far enough that the bits we don't want "fall off the end" on the left, then

shifts it right exactly the right amount to leave the field we want at the right of the word.

Q5.4
1 Point

unsigned int getField3(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

{

unsigned int result;

 result = (unsigned int) pow(2, uiNumBits) - 1;

 result &= (uiSrc >> uiStartBit);

return result;

}

EXPLANATION

We first set result to consist of uiNumbits ones, with the remaining bits zeros. We then shift

uiSrc, and zero out the unwanted bits with a bitwise and.

Q5.5
1 Point

unsigned int getField4(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

{

unsigned int result = 0;

Correct

Buggy

Correct

Buggy

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

unsigned int i;

for (i = 0; i < uiNumBits; i++)

 result = (result << 1) + 1;

 result = result && (uiSrc >> uiStartBit);

return result;

}

EXPLANATION

This approach would work, but the code carelessly uses a logical and instead of a bitwise

and.

Q5.6
1 Point

unsigned int getField5(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

{

unsigned int result = 0;

 result = ~result;

 result = result << (32 - (uiStartBit + uiNumBits));

 result = result >> (32 - (uiStartBit + uiNumBits));

 result = result & uiSrc;

 result = result >> uiStartBit;

return result;

}

EXPLANATION

The first line sets result to a word of "1" bits. The next three lines zero out the part of uiSrc

that lies to the left of the bits we want to extract. And then the final shift moves those bits to

the right of uiSrc.

Q5.7
3 Points

Finally, consider disassembling the ADR instruction, which has the format below:

Correct

Buggy

Correct

Buggy

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

Here is part of the implementation, which relies on a working implementation of getField() :

void disassem_ADR(unsigned int uiSrc)

{

unsigned int Rd;

int offset;

 assert(getField(uiSrc, 31, 1) == 0);

 assert(getField(uiSrc, 24, 5) == 0x10);

 Rd = getField(uiSrc, 0, 5);

 offset = /* INSERT EXPRESSION HERE */;

/* Now sign-extend offset, and print out the instruction. */

/* ... */

}

Recall that the high-order bits of the offset are in the immhi field, while its low-order bits are in

the immlo field. With this in mind, fill in the code marked /* INSERT EXPRESSION HERE */ . That is,

write a single expression for the offset (before it is sign-extended, and without printing

anything), which should involve multiple calls to getField() as well as any other necessary

arithmetic manipulation:

(getField(uiSrc, 5, 19) << 2) |
getField(uiSrc, 29, 2)

EXPLANATION

immhi consists of bits 5 through 23 (i.e., 19 bits), while immlo consists of bits 29 through 30

(i.e., 2 bits). The two calls to getField extract those bits, and then the left-shift and bitwise or

assemble them into a 21-bit value. Of course, multiplication by 4 can take the place of the

left shift, and addition can be used instead of bitwise or.

Q6 Linked-List De-Linking
8 Points

Consider the following linked-list type, as well as code intended to remove all nodes containing

val from the list:

struct Node {

struct Node *next;

int val;

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

};

struct List {

struct Node *first;

};

typedef struct List *List_T;

struct Node *remove_node(struct Node *node, int val)

{

if (!node) {

return NULL;

 } else if (node->val == val) {

 struct Node *next = remove_node(node->next, val); /* LINE 0 */

free(/* EXPRESSION 1 */);

return /* EXPRESSION 2 */;

 } else {

 node->next = remove_node(node->next, val);

return /* EXPRESSION 3 */;

 }

}

void List_remove(List_T list, int val)

{

list->first = remove_node(list->first, val);

}

Fill in the missing expressions in the code above. Hint: draw a diagram and trace through the

execution of one or two simple examples.

Q6.1
2 Points

What should EXPRESSION 1 be?

EXPLANATION

The operation of this code is slightly tricky, in that remove_node actually returns a pointer to

a Node, and that pointer is assigned (either to list->first or node->next). It is recommended

that you trace through how this works, using some simple examples. Turning to

EXPRESSION 1, "node" points to the relevant struct Node whose val field is equal to the

value we want to remove, so we want to free(node);

node

next

node->next

node->val

NULL

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

Q6.2
2 Points

What should EXPRESSION 2 be?

EXPLANATION

We can't return node->next, since node was already freed. On the other hand, we saved the

value from the recursive call to remove_node() in the "next" variable, and that's what we

want to pass up the call chain, so that the parent of this node can re-link to it.

Q6.3
2 Points

What should EXPRESSION 3 be?

EXPLANATION

In this case, we are not freeing "node", so we just return it up the call chain.

Q6.4
2 Points

We now wish to change the code so that only the first node containing val is removed from the

list. How should LINE 0 be changed (if the remaining code is left unchanged)?

node

next

node->next

node->val

NULL

node

next

node->next

node->val

NULL

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

In this case, we want to terminate the recursion as soon as we reach a node that we want to

remove. The remainder of the list (beginning with node->next) is what we should return from

remove_node, so that it can be assigned to the ->next field of the parent.

Q7 How smart is the compiler?
5 Points

In lecture, we considered some cases in which a smart optimizing compiler could or could not

perform an optimization. Let us consider the function g below, and a candidate optimization:

Original function, before optimization:

int g(int *x)

{

return f(x) + f(x);

}

After optimization:

int g(int *x)

{

return f(x) << 1;

}

Whether or not this optimization is valid depends, in turn, on the function f . In each of the

following cases, could a smart optimizing compiler perform the optimization above?

Q7.1
1 Point

The following function f is defined in the same file as function g :

int f(int *x)

struct Node *next = remove_node(node->next, NULL);

struct Node *next = remove_node(NULL, val);

struct Node *next = node;

struct Node *next = node->next;

return node;

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

{

printf("%d\n", *x);

return *x + 1;

}

EXPLANATION

f() has a user-visible side effect: it writes a value to stdout. In this case, the original g() will

call printf twice, while the optimized version will call it only once. So, the optimization is not

allowed.

Q7.2
1 Point

The following function f is defined in the same file as function g :

int f(int *x)

{

 *x = *x + 1;

return *x;

}

EXPLANATION

In this case, f()'s side effect is a bit more subtle: it modifies the value pointed to by its

parameter. So the proposed optimization to g() would leave *x incremented by 1 rather than

by 2, and would return 2x+2 rather than 2x+3 (if x is the original value of *x).

Q7.3
1 Point

The following function f is defined in the same file as function g :

The above optimization to g is allowed

The above optimization to g is not allowed

The above optimization to g is allowed

The above optimization to g is not allowed

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

int f(int *x)

{

return *x + 1;

}

EXPLANATION

In this case, f() has no side effects, and a good optimizing compiler will be able to deduce

that. So, the proposed optimization can be performed, since both the original and optimized

g() will always return the same value.

Q7.4
1 Point

The following function f is defined in the same file as function g :

static int counter = 0;

int f(int *x)

{

 counter++;

return *x + 1;

}

EXPLANATION

In this case, the original and optimized g() will always return the same value, but their side

effects will be different. The original will increment counter twice, while the optimized

version will only increment it once. Therefore, the behavior of the program as a whole would

be changed by the optimization, and so it is not allowed.

Q7.5
1 Point

The function f is not defined in the same file as function g .

Its definition is known only at link time.

The above optimization to g is allowed

The above optimization to g is not allowed

The above optimization to g is allowed

The above optimization to g is not allowed

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

In this case, the compiler cannot tell whether f() has side effects, and it must make the

conservative assumption that it might. So, it will not perform the optimization.

Q8 (Re-)Make Me!
9 Points

Here are fragments of modules that will be built into one executable named testtable . All

pertinent information is shown.

The above optimization to g is allowed

The above optimization to g is not allowed

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

/* testtable.c */

#include <stdio.h>

#include "table.h"

... rest of testtable.c

/* table.h */

#ifndef TABLE_INCLUDED

#define TABLE_INCLUDED

#include <stddef.h>

#include "mydefs.h"

... rest of table.h

#endif

/* table.c */

#include "table.h"

#include "node.h"

... rest of table.c

/* node.h */

#ifndef NODE_INCLUDED

#define NODE_INCLUDED

#include "mydefs.h"

... rest of node.h

#endif

/* node.c */

#include "node.h"

... rest of node.c

/* mydefs.h */

#ifndef MYDEFS_INCLUDED

#define MYDEFS_INCLUDED

... rest of mydefs.h

#endif

You have written a Makefile for this project that follows COS 217 best practices. Its structure is

as follows:

TARGET1: DEPENDENCIES1

 gcc217 testtable.o table.o node.o -o testtable

TARGET2: DEPENDENCIES2

 gcc217 -c testtable.c

TARGET3: DEPENDENCIES3

 gcc217 -c table.c

TARGET4: DEPENDENCIES4

 gcc217 -c node.c

Answer the following questions about the Makefile and the behavior of make :

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

Q8.1
1 Point

The line TARGET1: DEPENDENCIES1 should be

testtable: testtable.o table.o node.o table.h node.h mydefs.h

EXPLANATION

An executable should depend only on .o files.

Q8.2
1 Point

The dependency rule for testtable.o should be testtable.o: testtable.c table.h mydefs.h

EXPLANATION

A .o file should depend on its corresponding .c file, and any user (non-system) .h files

included by it, directly or indirectly.

Q8.3
1 Point

The dependency rule for table.o should be

table.o: table.c table.h stddef.h mydefs.h node.h mydefs.h

EXPLANATION

stddef.h should not be included, and mydefs.h should not be listed twice.

Q8.4
1 Point

The dependency rule for node.o should be node.o: node.c node.h mydefs.h

True

False

True

False

True

False

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

A .o file should depend on its corresponding .c file, and any user (non-system) .h files

included by it, directly or indirectly.

Q8.5
1 Point

The command gcc217 -c testtable.c builds testtable .

EXPLANATION

Because of the -c flag, this builds testtable.o

Q8.6
1 Point

When mydefs.h is out of date, table.o gets built twice, because table.c depends on mydefs.h

through both table.h and node.h .

EXPLANATION

make executes each rule a maximum of once.

Q8.7
1 Point

After issuing the make command to build the program, we modify the definition of one function

in node.c . If we issue the make command now, how many of the four targets in the Makefile will

be rebuilt?

True

False

True

False

True

False

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

Editing node.c causes node.o to be considered out of date, causing make to rebuild node.o.

That, in turn, causes testtable to be out of date, so it also gets rebuilt.

Q8.8
1 Point

After issuing the make command to build the program, we execute the touch mydefs.h command

to update the timestamp for mydefs.h to the current time, without changing its contents. If we

issue the make command now, how many of the four targets in the Makefile will be rebuilt?

EXPLANATION

testtable.c, table.c, and node.c all depend indirectly on mydefs.h. So, testtable.o, table.o, and

node.o will get rebuilt. Finally, testtable will be rebuilt.

Q8.9
1 Point

If we were to rearrange the Makefile by swapping lines 1 and 2 (TARGET1 and its command) with

lines 3 and 4 (TARGET2 and its command), then make would behave the same way in all

situations as it does with the original Makefile .

0

1

2

3

4

0

1

2

3

4

True

False

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

The first target is the default - it's what gets built if you just run "make" with no arguments.

So, swapping lines 1 and 2 with lines 3 and 4 would change the default, building testtable.o

instead of testtable when you just execute "make".

Q9 Beat the Grader!
3 Points

The following function returns a grade. You will receive 0 points if it returns an 'F' , 1 point if it

returns a 'C' , 2 points if it returns a 'B' , and 3 points if it returns an 'A' . Note: no buffer

overrun is necessary on this problem. Please do not attempt to execute one.

char grader(unsigned char secret)

{

const int princeton = -1746;

const int beat_harvard = 18-16;

const int beat_yale = 35-20;

int i;

if ((unsigned int) princeton < secret)

return 'F';

for (i = 0; i < 3; i++) {

if (secret < beat_harvard || secret < beat_yale)

return 'C';

 secret -= beat_harvard;

 secret += beat_yale;

 }

if (secret)

return 'B';

else

return 'A';

}

What value would you like to pass as the secret ?

217

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

EXPLANATION

The first if statement casts a small negative value to an unsigned int, resulting in a very large

value (over 4 billion). It is thus impossible for the function to return 'F', since the range of

secret is limited to 0..255. The tricky key to this problem is to realize that for secret to end

up equal to zero (and thus return 'A'), we must get unsigned overflow the last time through

the loop, and it must overflow by exactly 1 and no more. This precise overflow will occur if

secret is incremented 1 beyond the maximum value of an unsigned char, which is 255.

https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/
https://www.gradescope.com/

