
0/44 Questions Answered

Final Exam

Q1 Instructions and Pledge
1 Point

This exam consists of 8 multi-part questions (plus the pledge), and you have 3 hours — budget

your time wisely. This is a closed-book, closed-note exam, and "cheat sheets" are not allowed.

During the exam you must not refer to the textbook, course materials, notes, or any information

on the Internet other than the FAQ and AARCH64 reference linked below. You may not compile

or run any code on armlab or any other machine. You may use blank paper as scratch space,

but you must enter your answer in the online system in order to receive credit. You are not

allowed to communicate with any other person, whether inside or outside the class. You may

not send the exam problems to anyone, nor receive them from anyone, nor communicate any

information about the problems or their topics.

If you have questions about the wording of some problem, please refer to the FAQ at the

following URL:
https://docs.google.com/document/d/e/2PACX-

1vQ3tv6HDlQ6H�JE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg

/pub

You may also post a private message on Ed, but we only guarantee that we'll be available

during the following hours:

• Friday, 12/17, 12:00 noon – 10:00 PM EST

• Saturday, 12/18, 7:00 PM – 10:00 PM EST

• Sunday, 12/19, 7:00 PM – 10:00 PM EST

• Monday, 12/20, 10:00 AM – 10:00 PM EST

This examination is administered under the Princeton University Honor Code, and by signing

the pledge below you promise that you have adhered to the instructions above. Please type

out the Honor Code pledge exactly as follows, including this exact spelling and punctuation:

I pledge my honor that I have not violated the Honor Code during this examination.

Enter your answer here

Now type your name as a signature confirming that you have adhered to the Honor Code:

Enter your answer here

Save Answer

STUDENT NAME

Search students by name or email… 

Frequently Asked Questions and
Clari�cations

The following list will be kept up to date with frequently
asked questions and clari�cations on the �nal exam.
 Please remember to reload this webpage before asking a
question!

Questions 4.1 and 4.3: Please go ahead and declare local
variables if you need to, despite the fact that they would go
after the asserts, which is disallowed by C90.

Further clari�cations and reminders on 4.x:
● Please respect the instructions that “your functions

will not call any other functions”.
● Remember to ignore the asserts when translating

the C code into assembly in questions 4.2 and 4.4.
● There may be ways of solving the problems using

instructions that are not in the Assembly Language
Reference below. These solutions will receive credit,
if they are correct, but using these instructions is
de�nitely not required.

Question 5.4: The C function pow(x, y) returns a
double that is x raised to the power y.

Question 9: The answer should be a numeric value.

AARCH64 Assembly Language Reference
The following is a reference on AARCH64 assembly
language, which you may consult when completing
questions 2, 3, 4. Please note: this is the only outside
reference to which you are allowed to refer during the
exam. Attempting to access any other information is a
violation of the honor code.

Registers /Instructions Description

x0..x30, xzr / w0..w30,

wzr

8-byte / 4-byte registers. xzr and wzr hold 0.

x0..x7 / w0..w7 Parameters, caller-saved scratch.

x0 / w0 Holds return value.

x19..x28 / w19..w28 Callee-saved local variables.

mov dst, src Copy src (register or immediate value) to dst.

add/sub/mul dst, src1,

src2

Add / subtract / multiply src1 by src2, storing the
result in dst.

adds/subs/muls dst,

src1, src2

Same as above, but also set condition �ags.

sdiv/udiv dst, src1,

src2

Signed / unsigned division.

Published using Google Docs Learn More Repo� Abuse

COS 217 Fall 2021 Final Exam FAQ Updated automatically every 5 minutes

cmp src1, src2 Compare src1 and src2, setting condition �ags.

beq/bne label Branch to label if condition �ags indicate equal /
not equal.

blo/bhs label Branch to label if (unsigned) lower / higher or
same.

cbz/cbnz src, label Branch to label if register src is zero/nonzero.
(Ignores condition �ags.)

b label Branch to label unconditionally.

bl label Call function at label and save return address in
x30.

ret Return to code at address in x30.

ldr dst, [src] Load 8 or 4 bytes (depending on whether dst is
an x or w register) into register dst from memory
at address in register src.

str src, [dst] Store to memory at address in register dst from
register src.

ldrb dst, [src] Like ldr, but load one byte and zero-extend to
size of dst.

strb src, [dst] Store one byte.

[src, offset] Register+o�set addressing mode. Can be used
as the src of memory loads (ldr, ldrb, etc.) or as
the dst of stores (str, strb, etc.)

[src1, src2] Register+register addressing mode. Can be used
as the src of memory loads (ldr, ldrb, etc.) or as
the dst of stores (str, strb, etc.)

Published using Google Docs Learn More Repo� Abuse

COS 217 Fall 2021 Final Exam FAQ Updated automatically every 5 minutes

Q2 C and Assembly Mix 'n Match
4 Points

For this and the following questions, please refer to the AARCH64 quick reference at the

following URL (same as the FAQ):

https://docs.google.com/document/d/e/2PACX-

1vQ3tv6HDlQ6H�JE4NVvnQXDAInCTOcotrOWj_kMJtc3PMXV1ny2K0QbwCnVNw1_1eTxWLwghFALWdg

/pub

Please note: this is the only outside reference to which you are allowed to refer during the

exam. Attempting to access any other information is a violation of the honor code.

Now study the following four simple functions - two in AARCH64 assembly language and two in

C:

a:

 cbz w1, a_1

 udiv w0, w0, w1

a_1:

 ret

b:

 ret

unsigned int c(unsigned int x, unsigned int y)

{

if (y < x)

return y;

else

return x;

}

unsigned int d(unsigned int x, unsigned int y)

{

return x * y;

}

For each of the following unknown functions, select which of the functions above (a-d) has the

same effect.

Q2.1
1 Point

e:

 cmp w0, w1

 bhs e_1

 ret

e_1:

 mov w0, w1

 ret

Save Answer

Q2.2
1 Point

f:

 mov w2, 0

 cbnz w1, f_1

 ret

f_1:

 subs w0, w0, w1

 blo f_2 // Hint: branches if w0 < w1

 add w2, w2, 1

 b f_1

f_2:

 mov w0, w2

 ret

Save Answer

Q2.3
1 Point

g:

 mov w2, w0

 mov w0, wzr

 cbnz w1, g_1

 ret

g_1:

 add w0, w0, w2

 sub w1, w1, 1

 cbnz w1, g_1

 ret

Same effect as function a

Same effect as function b

Same effect as function c

Same effect as function d

Same effect as function a

Same effect as function b

Same effect as function c

Same effect as function d

Save Answer

Q2.4
1 Point

h:

 sub sp, sp, 16

 str x30, [sp]

 str w0, [sp,8]

 str w1, [sp,12]

 add w0, w0, w1

 ldr w1, [sp,12]

 sub w0, w0, w1

 ldr x30, [sp]

 add sp, sp, 16

 ret

Save Answer

Q3 GCD and LCM
9 Points

In precept, you saw both the C and assembly language code to calculate the GCD (Greatest

Common Divisor) of two integers using Euclid's algorithm.

Here is a mildly-edited version of the assembly language code:

1 MISSING .SECTION DIRECTIVE

2 promptStr:

3 .string "Enter an integer: "

4 scanfFormatStr:

5 .string "%ld"

6 printfFormatStr:

7 .string "The gcd is %ld\n"

//--

// Return the greatest common divisor of lFirst and lSecond.

// long gcd(long lFirst, long lSecond)

Same effect as function a

Same effect as function b

Same effect as function c

Same effect as function d

Same effect as function a

Same effect as function b

Same effect as function c

Same effect as function d

//--

8 .equ GCD_STACK_BYTECOUNT, 48

9 .equ LABSSECOND, 8

10 .equ LABSFIRST, 16

11 .equ LTEMP, 24

12 .equ LSECOND, 32

13 .equ LFIRST, 40

14 .section .text

15 .global gcd

 gcd:

16 sub sp, sp, GCD_STACK_BYTECOUNT

17 str x30, [sp]

18 str x0, [sp, LFIRST]

19 str x1, [sp, LSECOND]

20 ldr x0, [sp, LFIRST]

21 bl labs

22 str x0, [sp, LABSFIRST]

23 ldr x0, [sp, LSECOND]

24 bl labs

25 str x0, [sp, LABSSECOND]

 gcdLoop:

26 ldr x0, [sp, LABSSECOND]

27 cmp x0, 0

28 beq gcdLoopEnd

29 ldr x0, [sp, LABSFIRST]

30 ldr x1, [sp, LABSSECOND]

31 sdiv x2, x0, x1

32 mul x3, x2, x1

33 sub x4, x0, x3

34 str x4, [sp, LTEMP]

35 ldr x0, [sp, LABSSECOND]

36 str x0, [sp, LABSFIRST]

37 ldr x0, [sp, LTEMP]

38 str x0, [sp, LABSSECOND]

39 b gcdLoop

 gcdLoopEnd:

40 ldr x0, [sp, LABSFIRST]

41 ldr x30, [sp]

42 add sp, sp, GCD_STACK_BYTECOUNT

43 ret

Q3.1
1 Point

At line 1 of this code, there is a missing .section directive. What should it be? If multiple options

are valid, select the one that best corresponds to idiomatic C code like we've modeled in

precept exercises.

Save Answer

Q3.2
1 Point

Turning to the gcd function itself, it appears that most of the comments are missing. Referring to

the line numbers above, where would you insert each of the following comments? Note that

a comment should describe the block of code that follows it, which should include all loads of

variables, computation, stores of results, etc.

// Prolog

Save Answer

Q3.3
1 Point

// lAbsFirst = labs(lFirst)

Save Answer

Q3.4
1 Point

// lTemp = lAbsFirst % lAbsSecond

.section .bss

.section .data

.section .rodata

.section .stack

.section .text

Before line 1

Before line 16

Before line 17

Before line 18

Before line 20

Before line 18

Before line 20

Before line 21

Before line 22

Before line 29

Save Answer

Q3.5
1 Point

// lAbsFirst = lAbsSecond

Save Answer

Q3.6
1 Point

// Epilog and return lAbsFirst

Save Answer

Q3.7
1 Point

We now want to use the gcd code in the computation of the LCM (Least Common Multiple),

using the formula

.

Here is AARCH64 assembly language code to do the calculation:

//--

Before line 29

Before line 31

Before line 34

Before line 35

Before line 37

Before line 29

Before line 30

Before line 35

Before line 36

Before line 38

Before line 36

Before line 40

Before line 41

Before line 42

Before line 43

lcm(i, j) = i ∗ j/gcd(i, j)

// Return the lowest common multiple of lFirst and lSecond.

// long lcm(long lFirst, long lSecond)

//--

1 .equ LCM_STACK_BYTECOUNT, 48

2 LLCM .req x23

3 LGCD .req x22

4 LPROD .req x21

5 LSECOND .req x20

6 LFIRST .req x19

7 .section .text

8 .global lcm

 lcm:

// Prolog

9 sub sp, sp, LCM_STACK_BYTECOUNT

10 str x30, [sp]

11 str x19, [sp, 8]

12 str x20, [sp, 16]

13 str x21, [sp, 24]

14 str x22, [sp, 32]

15 str x23, [sp, 40]

// Store parameters in registers

16 mov LFIRST, x0

17 mov LSECOND, x1

// MISSING COMMENT #1

18 bl gcd

19 mov LGCD, x0

// lProd = lFirst * lSecond;

20 MISSING INSTRUCTION

// MISSING COMMENT #2

21 sdiv LLCM, LPROD, LGCD

// Epilog and return lAbsFirst

22 mov x0, LLCM

23 ldr x30, [sp]

24 ldr x19, [sp, 8]

25 ldr x20, [sp, 16]

26 ldr x21, [sp, 24]

27 ldr x22, [sp, 32]

28 ldr x23, [sp, 40]

29 add sp, sp, LCM_STACK_BYTECOUNT

30 ret

There is a missing comment (#1) before line 18. What should it read to correspond to the

probable flattened C code from which the assembly language was generated?

gcd();

gcd(lGcd);

lGcd = gcd();

lGcd = gcd(x0, x1);

lGcd = gcd(lFirst, lSecond);

Save Answer

Q3.8
1 Point

There is a missing instruction on line 20. What should it read?

Save Answer

Q3.9
1 Point

There is a missing comment (#2) before line 21. What should it read to correspond to the

probable flattened C code from which the assembly language was generated?

Save Answer

Q4 I thought we were done with questions about strcpy...
12 Points

Recall that the C standard library's strcpy function copies a string to a destination from a

source, and returns the address of the destination string:

char *strcpy(char *dest, const char *src);

In Assignment 2, you wrote two C implementations of Str_copy , which was intended to mimic

strcpy . One implementation accessed elements of the source and destination strings by index,

changing the index to iterate through the string, while the other implementation accessed

elements of the source and destination strings by pointer dereference, and moved the pointer

to iterate through the string.

mul LPROD, LFIRST, LSECOND

mul LFIRST, LSECOND, LPROD

mul LPROD, x0, x1

mul x0, x1, LPROD

mul LPROD, [sp,8], [sp,16]

mul [sp,8], [sp,16], LPROD

// lLcm = lGcd / lProd;

// lLcm = lProd / lGcd;

// lLcm = sdiv();

// lGcd = lProd / lLcm;

// lGcd = sdiv();

In this problem, you will do the same thing, except in AARCH64 assembly language. You will

write both the index-iterating version, strcpyi , and the pointer-iterating version, strcpyp . To get

started, you will first complete the flattened C code for the two functions. You can then compose

your assembly by translating your flattened C code; however, you are not required to comment

your assembly code with the flattened C statements. Also, recall that the assert validation in the

C code does not get translated into assembly.

Your assembly functions should not use either the stack or callee-saved registers to store local

variables or saved parameters, but instead do all their work using the caller-saved scratch

registers. And since your functions will not call any other functions, they do not need to save

x30, and thus do not need to manage a stack frame at all in a prolog or epilog.

Note: each implementation can be completed in about a dozen lines of code or less. If you are

writing considerably more than that, you may be off on the wrong track.

Q4.1
2 Points

/* Copy string from src to dest using index iteration. Return dest. */

char *strcpyi(char *dest, const char *src) {

 assert(dest != NULL);

 assert(src != NULL);

Enter your answer here

}

Save Answer

Q4.2
4 Points

Hint: use the register+register addressing mode.

// Copy string from src to dest using index iteration. Return dest.

// char *strcpyi(char *dest, const char *src)

 .global strcpyi

strcpyi:

Enter your answer here

Save Answer

Q4.3
2 Points

/* Copy string from src to dest using pointer iteration. Return dest. */

char *strcpyp(char *dest, const char *src) {

 assert(dest != NULL);

 assert(src != NULL);

Enter your answer here

}

Save Answer

Q4.4
4 Points

// Copy string from src to dest using pointer iteration. Return dest.

// char *strcpyp(char *dest, const char *src)

 .global strcpyp

strcpyp:

Enter your answer here

Save Answer

Q5 Disassembly and Bit-Twiddling
10 Points

You are writing a disassembler: a program that takes AARCH64 machine language instructions

and translates them into AARCH64 assembly language. One of the functions you need to write

is

unsigned int getField(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits);

to extract each field in the instruction. Its arguments are:

uiSrc : a machine-language instruction, represented as a 32-bit unsigned value;

uiStartBit : indicates the location in uiSrc of the least-significant bit of the field, where

uiStartBit == 0 refers to the least-significant bit of uiSrc ;

uiNumBits : the number of bits in the desired field.

For example, to get the second source register in an ADD instruction, which has the format

below, we would call getField(uiSrc, 16, 5) , since the second source register Rm is in a 5-bit

field starting at bit 16.

Q5.1
2 Points

What is the value, in decimal, returned by a call to getField(0x8B130280, 16, 5) ? Hint: if you're

thinking about endianness, you're overthinking what is necessary to solve this problem.

Enter your answer here

Save Answer

Q5.2
1 Point

The following are some attempts to implement getField() , not all of which are successful. For

each one, determine whether it works correctly for all valid inputs, or whether it is buggy. You

should consider only valid calls to getField() — i.e., you should assume that

uiStartBit + uiNumBits <= 32 . Hint: the right-shift operator >> , when applied to an

unsigned int , performs a logical right shift that fills in on the left with "0" bits.

unsigned int getField1(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

{

 uiSrc << (32 - (uiStartBit + uiNumBits));

 uiSrc >> (32 - (uiStartBit + uiNumBits));

 uiSrc >> uiStartBit;

return uiSrc;

}

Save Answer

Q5.3
1 Point

unsigned int getField2(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

{

 uiSrc = uiSrc << (32 - (uiStartBit + uiNumBits));

 uiSrc = uiSrc >> (32 - uiNumBits);

return uiSrc;

Correct

Buggy

}

Save Answer

Q5.4
1 Point

unsigned int getField3(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

{

unsigned int result;

 result = (unsigned int) pow(2, uiNumBits) - 1;

 result &= (uiSrc >> uiStartBit);

return result;

}

Save Answer

Q5.5
1 Point

unsigned int getField4(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

{

unsigned int result = 0;

unsigned int i;

for (i = 0; i < uiNumBits; i++)

 result = (result << 1) + 1;

 result = result && (uiSrc >> uiStartBit);

return result;

}

Save Answer

Q5.6
1 Point

unsigned int getField5(unsigned int uiSrc, unsigned int uiStartBit, unsigned int uiNumBits)

Correct

Buggy

Correct

Buggy

Correct

Buggy

{

unsigned int result = 0;

 result = ~result;

 result = result << (32 - (uiStartBit + uiNumBits));

 result = result >> (32 - (uiStartBit + uiNumBits));

 result = result & uiSrc;

 result = result >> uiStartBit;

return result;

}

Save Answer

Q5.7
3 Points

Finally, consider disassembling the ADR instruction, which has the format below:

Here is part of the implementation, which relies on a working implementation of getField() :

void disassem_ADR(unsigned int uiSrc)

{

unsigned int Rd;

int offset;

 assert(getField(uiSrc, 31, 1) == 0);

 assert(getField(uiSrc, 24, 5) == 0x10);

 Rd = getField(uiSrc, 0, 5);

 offset = /* INSERT EXPRESSION HERE */;

/* Now sign-extend offset, and print out the instruction. */

/* ... */

}

Recall that the high-order bits of the offset are in the immhi field, while its low-order bits are in

the immlo field. With this in mind, fill in the code marked /* INSERT EXPRESSION HERE */ . That is,

write a single expression for the offset (before it is sign-extended, and without printing

anything), which should involve multiple calls to getField() as well as any other necessary

arithmetic manipulation:

Enter your answer here

Save Answer

Correct

Buggy

Q6 Linked-List De-Linking
8 Points

Consider the following linked-list type, as well as code intended to remove all nodes containing

val from the list:

struct Node {

struct Node *next;

int val;

};

struct List {

struct Node *first;

};

typedef struct List *List_T;

struct Node *remove_node(struct Node *node, int val)

{

if (!node) {

return NULL;

 } else if (node->val == val) {

 struct Node *next = remove_node(node->next, val); /* LINE 0 */

free(/* EXPRESSION 1 */);

return /* EXPRESSION 2 */;

 } else {

 node->next = remove_node(node->next, val);

return /* EXPRESSION 3 */;

 }

}

void List_remove(List_T list, int val)

{

list->first = remove_node(list->first, val);

}

Fill in the missing expressions in the code above. Hint: draw a diagram and trace through the

execution of one or two simple examples.

Q6.1
2 Points

What should EXPRESSION 1 be?

Save Answer

Q6.2

node

next

node->next

node->val

NULL

2 Points

What should EXPRESSION 2 be?

Save Answer

Q6.3
2 Points

What should EXPRESSION 3 be?

Save Answer

Q6.4
2 Points

We now wish to change the code so that only the first node containing val is removed from the

list. How should LINE 0 be changed (if the remaining code is left unchanged)?

Save Answer

Q7 How smart is the compiler?
5 Points

In lecture, we considered some cases in which a smart optimizing compiler could or could not

perform an optimization. Let us consider the function g below, and a candidate optimization:

node

next

node->next

node->val

NULL

node

next

node->next

node->val

NULL

struct Node *next = remove_node(node->next, NULL);

struct Node *next = remove_node(NULL, val);

struct Node *next = node;

struct Node *next = node->next;

return node;

Original function, before optimization:

int g(int *x)

{

return f(x) + f(x);

}

After optimization:

int g(int *x)

{

return f(x) << 1;

}

Whether or not this optimization is valid depends, in turn, on the function f . In each of the

following cases, could a smart optimizing compiler perform the optimization above?

Q7.1
1 Point

The following function f is defined in the same file as function g :

int f(int *x)

{

printf("%d\n", *x);

return *x + 1;

}

Save Answer

Q7.2
1 Point

The following function f is defined in the same file as function g :

int f(int *x)

{

 *x = *x + 1;

return *x;

}

The above optimization to g is allowed

The above optimization to g is not allowed

The above optimization to g is allowed

The above optimization to g is not allowed

Save Answer

Q7.3
1 Point

The following function f is defined in the same file as function g :

int f(int *x)

{

return *x + 1;

}

Save Answer

Q7.4
1 Point

The following function f is defined in the same file as function g :

static int counter = 0;

int f(int *x)

{

 counter++;

return *x + 1;

}

Save Answer

Q7.5
1 Point

The function f is not defined in the same file as function g .

Its definition is known only at link time.

Save Answer

The above optimization to g is allowed

The above optimization to g is not allowed

The above optimization to g is allowed

The above optimization to g is not allowed

The above optimization to g is allowed

The above optimization to g is not allowed

Q8 (Re-)Make Me!
9 Points

Here are fragments of modules that will be built into one executable named testtable . All

pertinent information is shown.

/* testtable.c */

#include <stdio.h>

#include "table.h"

... rest of testtable.c

/* table.h */

#ifndef TABLE_INCLUDED

#define TABLE_INCLUDED

#include <stddef.h>

#include "mydefs.h"

... rest of table.h

#endif

/* table.c */

#include "table.h"

#include "node.h"

... rest of table.c

/* node.h */

#ifndef NODE_INCLUDED

#define NODE_INCLUDED

#include "mydefs.h"

... rest of node.h

#endif

/* node.c */

#include "node.h"

... rest of node.c

/* mydefs.h */

#ifndef MYDEFS_INCLUDED

#define MYDEFS_INCLUDED

... rest of mydefs.h

#endif

You have written a Makefile for this project that follows COS 217 best practices. Its structure is

as follows:

TARGET1: DEPENDENCIES1

 gcc217 testtable.o table.o node.o -o testtable

TARGET2: DEPENDENCIES2

 gcc217 -c testtable.c

TARGET3: DEPENDENCIES3

 gcc217 -c table.c

TARGET4: DEPENDENCIES4

 gcc217 -c node.c

Answer the following questions about the Makefile and the behavior of make :

Q8.1
1 Point

The line TARGET1: DEPENDENCIES1 should be

testtable: testtable.o table.o node.o table.h node.h mydefs.h

Save Answer

Q8.2
1 Point

The dependency rule for testtable.o should be testtable.o: testtable.c table.h mydefs.h

Save Answer

Q8.3
1 Point

The dependency rule for table.o should be

table.o: table.c table.h stddef.h mydefs.h node.h mydefs.h

Save Answer

Q8.4
1 Point

The dependency rule for node.o should be node.o: node.c node.h mydefs.h

Save Answer

Q8.5
1 Point

The command gcc217 -c testtable.c builds testtable .

True

False

True

False

True

False

True

False

Save Answer

Q8.6
1 Point

When mydefs.h is out of date, table.o gets built twice, because table.c depends on mydefs.h

through both table.h and node.h .

Save Answer

Q8.7
1 Point

After issuing the make command to build the program, we modify the definition of one function

in node.c . If we issue the make command now, how many of the four targets in the Makefile will

be rebuilt?

Save Answer

Q8.8
1 Point

After issuing the make command to build the program, we execute the touch mydefs.h command

to update the timestamp for mydefs.h to the current time, without changing its contents. If we

issue the make command now, how many of the four targets in the Makefile will be rebuilt?

True

False

True

False

0

1

2

3

4

0

1

2

3

4

Save Answer

Q8.9
1 Point

If we were to rearrange the Makefile by swapping lines 1 and 2 (TARGET1 and its command)

with lines 3 and 4 (TARGET2 and its command), then make would behave the same way in all

situations as it does with the original Makefile .

Save Answer

Q9 Beat the Grader!
3 Points

The following function returns a grade. You will receive 0 points if it returns an 'F' , 1 point if it

returns a 'C' , 2 points if it returns a 'B' , and 3 points if it returns an 'A' . Note: no buffer

overrun is necessary on this problem. Please do not attempt to execute one.

char grader(unsigned char secret)

{

const int princeton = -1746;

const int beat_harvard = 18-16;

const int beat_yale = 35-20;

int i;

if ((unsigned int) princeton < secret)

return 'F';

for (i = 0; i < 3; i++) {

if (secret < beat_harvard || secret < beat_yale)

return 'C';

 secret -= beat_harvard;

 secret += beat_yale;

 }

if (secret)

return 'B';

else

return 'A';

}

What value would you like to pass as the secret ?

Enter your answer here

Save Answer

True

False

