
0/35 Questions Answered
TIME REMAINING

1 hr 49 mins
!

COS 217 Final Exam

Q1 Be our guest - put our exam to the test
0 Points

This exam consists of 7 substantive questions (Q2-Q8 -- Q1 is only

exam information and Q10 is only the Honor pledge) totaling 90

points. Q9 is a 1-point lecture "attention to detail" extra credit. Most

of the substantive questions are made up of multiple parts, with

points allocated as indicated.

Unless you have confirmed ODS accommodations, you have 3

hours (180 minutes) to complete the exam from the time you begin.

Unless you have received an alternate exam window from Dr.

Moretti via your Dean or Director of Studies, you must complete the

exam by the end of the day (11:59 PM Princeton time (US Eastern

Time)) on December 12, irrespective of when you began.

In Gradescope, students’ answers are autosaved as they enter

them. We have observed a couple second latency, though, so we

advise against changing answers right up to the deadline. There is

a countdown timer (which can be hidden) in the top right corner of

the screen.

This exam is "open-book" but "closed-communication":

You are not allowed to communicate with any other person,

whether inside or outside the class. You may not send the exam

problems to anyone, nor receive them from anyone, nor

communicate any information about the problems or their topics.

You are allowed to consult any material from course lectures,

precepts, readings, assignments, Ed, etc.

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

1 of 23 12/21/20, 10:10 PM

Christopher Moretti
Exam Statistics:

Min: 40/90
Median: 73/90
Max: 91/90

Mean: 70.21/90
StdDev: 17.37/90

Lowest scoring questions:
5.2 (24%)
8.8 (52%)
6.3 (60%)
7.1 (62%)
5.1 (62%)

Questions scoring >90%:
2.3
3.3
5.3
6.1, 6.2, 6.5, 6.7, 6.8
8.2, 8.5, 8.6

�

You are allowed to use resources found on the web, so long as

they do not violate the communication rule above (i.e., so long as

they are not solicited by you). As an example, you can read an

old Stack Overflow post, but you can't post a question to Stack

Overflow.

You may build and run any code on armlab (though be careful, as

this can be a dramatic time sink!)

You may post (private!) posts to Ed to seek clarification from the

course staff. We will monitor Ed regularly, however we cannot

guarantee 24-hour availability throughout the exam period.

This examination is administered under the Princeton University

Honor Code. All suspected violations of the Honor Code must be

reported to the Committee on Discipline. You will attest to the

standard pledge in Q10 after you finish your responses.

Q2 Be Bashful
9 Points

Q2.1
5 Points

Select all of the following options that will produce an empty file

(that is, a file with length 0) called myfile when executed in bash

(assume that myfile does not already exist):

I've read this. Okay!"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

2 of 23 12/21/20, 10:10 PM

Q2.2
2 Points

You have two programs, first and second , both of which appear

in your PATH . You would like to execute first and then execute

second only if first succeeds. Write 1-2 lines of bash commands

that will accomplish this:

Enter your answer here

Q2.3
2 Points

You have several bash commands that you'll be using over and

over. Give two plausible ways to improve this workflow versus

typing in the commands repeatedly:

Enter your answer here

Q3 You're no Dumbo when you automate
building and testing.

echo > myfile

touch myfile

:> myfile

true || cp /dev/null myfile

>| myfile

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

3 of 23 12/21/20, 10:10 PM

echo > myfile creates a file containing a newline character. (You have
to provide echo with the argument -n to suppress the newline.)

touch myfile updates the modification timestamp of the file, creating it
(with no contents) if necessary.

: is a bash built-in null command: it takes no input, produces no output,
and returns success. It is very similar to the command true.

Speaking of true, this also simply returns success. The || operator
short-circuits (just like in C and Java), and since true OR (anything) is
true, the cp command is never executed. Without the true || this would
have been a valid answer: that cp command does in fact create an
empty file.

You may have seen >| along the way in this course to indicate that you
want to "clobber" the file that standard output is redirected to, even if it
exists. So this is used instead of just > with another variant of the null
command. bash (but not all shells) has the same behavior as the null
command when you omit the command entirely.

There were several approaches that could work.
Here are three common ones:

first && second

if first; then second; fi

first
 if [$? -eq 0]; then second; fi

Examples of reasonable answers include:
* use a bash script
* use non-file targets in a Makefile
* define short bash aliases for the commands
* use ctrl-r to search the bash history
* use !prefix to access the bash history
* use the up arrow to manually cycle through history

13 Points

Consider the following C code, which is executed only once in its

program. You may assume that x , y , and z are initialized with int

values from standard input before executing this code:

switch (x) {
case 1: y *= foo(y);

 y++;
case 2: y *= bar(y);

 y--;
default:

 y *= baz(y);
}

if (z)
 y++;
else
 y--;

Q3.1
2 Points

How many input data sets will be necessary in order to achieve

complete statement testing of this code?

Enter your answer here

Q3.2
2 Points

How many input data sets will be necessary in order to achieve

complete path testing of this code?

Enter your answer here

Q3.3
9 Points

Create a proper Makefile for the dependency graph below. Your

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

4 of 23 12/21/20, 10:10 PM

Statement testing ensures
that every statement in the
file is executed at least once.

Because there are no break;
statements at the end of each
case, you can make sure
every statement within the
switch is executed by starting
in case 1.

At that point, you only need
two inputs: one that enters
the consequent of the if and
another that enters the
alternative of the if, so long
as at least one of those two
enters into case 1 of the
switch.

Thus, the correct answer is 2.

Path testing requires every possible logical path
through the code to be tested.

For this program, there are 3 paths through the
switch statement (entering in case 1, entering in
case 2, and entering in default), and each of those
has two ways through the if statement (the
consequent and the alternative).

Thus, there are 6 possible paths through the code.

Makefile should minimize the number of recompilations

necessary by supporting partial-builds based on the dependency

graph. You are not required to have any non-file targets, however

the final executable target must be created when make is

invoked with no arguments.

Note -- Gradescope will not let you enter a tab character in the

response field, so instead you can use 8 spaces as the prefix to the

command for any rule.

Enter your answer here

Q4 Li Shang'll make a string out of you
12 Points

For each part of this question you are presented with three code

snippets. Assume each snippet is in its own one-file program with

all appropriate header files included. In each snippet, lines prefixed

with o: are outside any function and lines prefixed with f: are

within a function and appear contiguously in the order given.

You will indicate which of the snippets result in the specified

memory section containing the specified data. It could be none of

them, all of them, or anywhere in between.

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

5 of 23 12/21/20, 10:10 PM

The nine points were allocated as follows:
* make with no arguments should build executable
(so either the first rule must be the executable or a
non-file target with the executable as a dependency.)
* rule to make executable should have .o files as dependencies
* rule to make executable should *not* have .c or .h files as dependencies
* command to build executable should only use .o files and should name it target
* there should be rules for three .o files: one.o, two.o, and three.o
* each .o rule should have corresponding .c file as dependency
* each .o rule should have corresponding .h file as dependency
* the two.o rule should also have one.h as a dependency, since two.h #includes one.h
* each .o command should use only corresponding .c file, no .h files. Implicit rules are okay.

The correct answer is:

target: one.o two.o three.o
 gcc217 one.o two.o three.o -o target
one.o: one.c one.h
 gcc217 -c one.c
two.o: two.c two.h one.h
 gcc217 -c two.c
three.o: three.c three.h
 gcc217 -c three.c

For example, here is an example of a snippet that results in the

RODATA section containing the 7 bytes of the string "RODATA":

f: puts("RODATA");

It is okay if the snippet also results in another section containing the

specified data.

Q4.1
3 Points

Consider the following code snippets:

/* A */
f: char stack[] = {'S', 'T', 'A', 'C', 'K', '\0'};

/* B */
f: char *stack = "STACK";

/* C */
f: char stack[6];
f: strcpy(stack, "STACK");

Which of these snippets result in the STACK section containing the

6 bytes of the string "STACK"?

Q4.2
3 Points

A

B

C

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

6 of 23 12/21/20, 10:10 PM

A: declares stack as a local variable within a function,
with array of characters as its type. Local variable arrays
defined at compile-time are allocated in their function's
stackframe. The initializer list sets its size (since it was
not provided in the []) and contents.

B: declares stack as a local variable within a function,
with pointer to a character as its type. This pointer is
allocated in its function's stackframe, but it is initialized
to the address of a string literal (which is stored in the
RODATA section), not the bytes of the string itself.

C: declares stack as a local variable within a function,
with array of characters as its type and a length of 6.
Local variable arrays defined at compile-time are
allocated in their function's stackframe. The address of
that variable and the address (in the RODATA section)
of the string literal are passed to strcpy, which copies the
bytes of the string from the RODATA section into the
array on the stack.

Consider the following code snippets:

/* D */
f: char *heap = malloc(strlen("HEAP")+1);
f: heap = "heap";

/* E */
f: char *heap = calloc(5, sizeof(char));
f: char *pile = "HEAP";
f: for (i = 0; i < 4; i++) /* assume i has been declared as a size_t */
f: heap[i] = pile[i];

/* F */
f: char **heap = malloc(sizeof(char*));
f: heap[0] = strcpy(malloc(5), "HEAP");

Assuming memory allocation always succeeds, which of these

snippets result in the HEAP section containing the 5 bytes of the

string "HEAP"?

Q4.3
3 Points

Consider the following code snippets:

/* G */
o: char data[5] = "DATA";

/* H */
o: char *data;

D

E

F

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

7 of 23 12/21/20, 10:10 PM

E: declares heap as a local variable within a function, with pointer to a
character as its type. It is initialized to an address in the heap returned
by calloc, which is the beginning of an allocation sufficiently large to
store the required string that has had all its bytes set to '\0'. The local
variable pile (also a char *) is declared and initialized to point to the
address of the string literal in the RODATA section. Within the loop, each
of the first four characters of string in RODATA are accessed by
dereferencing pile (using array indexing syntax) and copied into the
heap by dereferencing the heap pointer in the same manner. Because
the allocation in the heap was initialized to all null-bytes, not copying the
trailing null-byte from RODATA is not a problem.

F: The strcpy alone is sufficient here. heap is declared as a local
variable within a function, with pointer to a character pointer as its type.
It is initialized to the address returned by malloc, which is the first byte of
an allocation in the heap large enough to store a single pointer to a
character. strcpy takes as its destination argument another address
returned by malloc, which is the first byte of a second allocation in the
heap, this one 5 bytes long. strcpy's source argument is the address in
the RODATA section of the string literal. strcpy copies each of the bytes

of the string from the RODATA section into the second heap allocation
(satisfying the requirement), and returns the address of the allocation to
be referenced by the pointer from the first heap allocation.

D: declares heap as a local
variable within a function,
with pointer to a character as
its type. It is initialized to an
address in the heap returned
by the call to malloc, which is
the beginning of an allocation
sufficiently large to store the
required string. However no
bytes are copied into this
space on the heap, instead,
the variable is pointed to the
location of a string literal in
RODATA.

It doesn't impact the answer,
but perhaps worth noting:
1 this creates a memory leak:
there is no way to access the
malloc’ed memory
2 the string in RODATA isn't
even the correct string, being
lower-case.

f: data = "DATA";

/* I */
o: char *data = "217!";
f: data = "DATA";

Which of these snippets result in the DATA section containing the 5

bytes of the string "DATA"?

Q4.4
3 Points

Consider the following code snippets:

/* J */
o: char *bss;
f: bss = "BSS";

/* K */
o: char bss[4];
f: strcpy(bss, "BSS");

/* L */
o: char *bss = NULL;
f: strcpy(bss, "BSS");

Which of these snippets result in the BSS section containing the 4

bytes of the string "BSS"?

G

H

I

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

8 of 23 12/21/20, 10:10 PM

G: declares data as a file-scope variable with array of characters as its type and a
length of 5. Variables defined outside any function and given an explicit
initialization in a declaration are put in the DATA section. Its initialization uses the
same string syntactic sugar for an initializer list as from this precept handout on
stack-resident strings: https://www.cs.princeton.edu/courses/archive/fall20/cos217/
precepts/07arraysstrings/strings.pdf

H: declares data as a file-scope variable with pointer to a character as its type.
Variables defined outside any function and not given an explicit initialization in a
declaration are put in the BSS section.

I: declares data as a file-scope variable with pointer to a character as its type.
Variables defined outside any function and given an explicit initialization in a
declaration are put in the DATA section. It is initialized to point at the address of
the first byte of the string literal "217!", in RODATA. The assignment within the
function points data at a different string (also in the RODATA section) instead of
copying the bytes of the string into the DATA section.

Q5 Soul -> Onward -> Frozen II -> ... -> Snow
White
21 Points

Consider the following buggy implementation of a List construct,

and assume that all necessary interface files have been included:

/* a Node_T is a member of the List with a string as contents */
typedef struct node* Node_T;

/* building block of the List */
struct node {

/* contents of node */
char* payload;
/* next node in List */

 Node_T next;
};

/* head of the List */
static Node_T first = NULL;

/* if payload is not already in the List,
 inserts a new node at front of the List having contents payload.
 returns 1 if insertion is successful, 0 if unsuccessful. */
int List_insert(const char* payload) {
 Node_T curr = first;
 assert(payload != NULL);

while(curr != NULL)
if(!strcmp(curr->payload, payload))

return 0;
 curr = malloc(sizeof(struct node));

if(curr == NULL)
return 0;

 curr->next = first;
 curr->payload = malloc(strlen(payload)+1);

if(curr->payload == NULL)

J

K

L

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

9 of 23 12/21/20, 10:10 PM

J: declares bss as a file-scope variable with pointer to a character as its type. Variables
defined outside any function and not given an explicit initialization in a declaration are put
in the BSS section. The assignment within the function gives bss a value that is an
address in the RODATA section (the address of the first byte of the string literal) instead
of copying the bytes of the string into the BSS section.

K: declares bss as a file-scope variable with array of characters as its type and a length of
4. Variables defined outside any function and not given an explicit initialization in a
declaration are put in the BSS section. Later, strcpy takes the address of bss in the BSS
section and the address of a string literal in the RODATA section and copies each byte of
the latter into the former, so the required bytes do end up in BSS.

L: declares bss as a file-scope variable with pointer to a character as its type. Variables
defined outside any function and given an explicit initialization in a declaration are put in
the DATA section. Also, though it does not affect the answer, there is another problem
here: passing a NULL pointer as strcpy’s destination will crash.

return 0;
strcpy(curr->payload, payload);
return 1;

}

/* removes all nodes from the List */
void List_free() {
 Node_T current;

for(current = first; current != NULL; current = current->next)
free(current);

}

Q5.1
1 Point

List , as defined and used here, is a(n):

Q5.2
1 Point

Node_T , as defined and used here, is a(n):

Q5.3
1 Point

Making a defensive copy of the payload string in List_insert is

Stateless Module

ADT

AO

None of these

Stateless Module

ADT

AO

None of these

"

"

"

"

"

"

"

"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

10 of 23 12/21/20, 10:10 PM

List is an abstract object:

* it has a file-scope field defining its state and
a set of functions using that state, such that
the only way for a client to interact with the
state is through those functions.

* the functions interact with only the single
instance of it, unlike in an ADT where a
pointer to the instance is passed in as a
parameter to the functions.

A Node_T, as a pointer to an underlying
structure, does represent an object with state
(unlike, e.g., the string module from A2).

A Node_T's state may be directly manipulated
by List functions, so it is not abstract.

A Node_T can have an arbitrary number of
instances instantiated, so it is not an AO.

So "None" is the best answer.

unnecessarily cautious, because the payload parameter to

List_insert is declared const .

Q5.4
9 Points

Identify three bugs in the List_insert function and how each

could be fixed.

A bug for this problem is something that causes a warning or error

from gcc217, a runtime crash, behavior that violates the function's

contract, or a dynamic memory management issue observable by

MemInfo or Valgrind.

Bug 1:

Enter your answer here

Bug 2:

Enter your answer here

Bug 3:

Enter your answer here

Q5.5
9 Points

True

False

"

"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

11 of 23 12/21/20, 10:10 PM

The const keyword stops the module implementation from
changing the value, but it doesn't stop the client (who owns
the data) from changing it unbeknownst to the module. The
premise is identical to our rationale for the defensive copy of
the key in the SymTable assignment.

The "contains check" while loop doesn't advance curr
(which results in an infinite loop when the list isn't empty
and you're inserting a payload that doesn't already exist at
the head of the list). The fix is to add an else clause to the if
statement within the while loop that updates curr, e.g. curr =
curr->next; (or make the while's body a compound
statement with the update after the if statement)

There is a memory leak if the second malloc call fails,
because the space allocated by the first malloc call is not
freed. The fix is to free(curr); before returning 0 from the
curr->payload malloc check.

The new node's next pointer is set to point at first, so that
it will come before all existing items in the list, but first is
not updated to point to the new node, so the list effectively
does not change. Further, this means that the new node
and its payload are inaccessible, and thus a memory leak.
The fix is to update first = curr; before returning 1.

Identify three bugs in the List_free function and how each could

be fixed.

A bug for this problem is something that causes a warning or error

from gcc217, a runtime crash, behavior that violates the function's

contract, or a dynamic memory management issue observable by

MemInfo or Valgrind.

Bug 1:

Enter your answer here

Bug 2:

Enter your answer here

Bug 3:

Enter your answer here

Q6 Ursula implores you to "Go ahead! Make
your choice!"
10 Points

Here are the C definitions for a slightly different list from the one in

the previous Question:

/* a Node_T is a member of a collection holding unsigned long values */
typedef struct node* Node_T;

struct node {
/* contents of node */
unsigned long payload;
/* next node in the list */

 Node_T next;

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

12 of 23 12/21/20, 10:10 PM

There is a memory leak, because only the
struct is freed, but the defensive copy of the
payload needs to be freed too. The fix is to add
free(current->payload); before the existing
free(current); within the while loop's body.

The update step of the for loop dereferences a
dangling pointer, since current was just freed in
the previous iteration of the loop body. The
easiest fix is to add another variable declaration
at the top of the function, e.g. Node_T next;, set
next = current->next; within the body of the loop
before freeing current, and change the update
step to be current = next.

first is left as a dangling pointer instead of being
set to NULL, so future list accesses will attempt
to traverse through nodes that have already been
freed. The fix is to add first = NULL; after the
loop.

};

struct list {
/* head of the list */

 Node_T first;
/* number of nodes in the list */
unsigned long length;

};

/* a List_T is a collection of unsigned longs */
typedef struct list* List_T;

And here is an AARCH64 assembly language function correctly

implementing some operation for such a list:

1 .global List_mystery
2 List_mystery:
3 sub sp, sp, 32
4 str x0, [sp,8]
5 ldr x1, [x0,8]
6 cmp x1, xzr
7 bne .L2
8 mov x0, 0
9 b .L3
10 .L2:
11 ldr x1, [x0]
12 ldr x2, [x1]
13 str x2, [sp,16]
14 str x1, [sp,24]
15 ldr x2, [x1,8]
16 b .L4
17 .L6:
18 ldr x3, [x2]
19 ldr x0, [sp,16]
20 cmp x3, x0
21 bls .L5
22 str x3, [sp,16]
23 str x2, [sp,24]
24 .L5:
25 ldr x2, [x2,8]
26 .L4:
27 cmp x2, xzr
28 bne .L6
29 ldr x0, [sp,24]
30 .L3:
31 add sp, sp, 32
32 ret

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

13 of 23 12/21/20, 10:10 PM

Answer each part of this question based on the code above.

Q6.1
1 Point

How many parameters does the function List_mystery take?

Q6.2
1 Point

Does the function List_mystery appear to return a value?

Q6.3
1 Point

What is the purpose of lines 13-14:

str x2, [sp, 16]
str x1, [sp, 24]

0

1

2

3 or more

Yes

No

Save the value of some parameters

Save the value of some callee-saved registers

Allocate space for some local variables

Initialize some local variables

"

"

"

"

"

"

"

"

"

"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

14 of 23 12/21/20, 10:10 PM

Line 4 stores the initial value of x0, which is the
first argument. No registers among x1-x7 are
referenced before being loaded into. So there is a
single parameter.

Line 8 puts the value 0 in x0 before branching to the
epilogue and return. Line 29 loads the value of a local
variable into x0 before continuing on sequentially to the
epilogue and return. Since x0 is the register used for the
return value, this behavior suggests that the function does
return a value.

The stack *can* be used for each of storing
function arguments, saving initial values of
callee-saved registers to be restored before
returning, and storing local variables.

But in this case, [sp, 8] is used for the
parameter (based on line 4), and the function
never uses any callee-saved registers, so [sp,
16] and [sp, 24] are the locations in the
stackframe for local variables. The str
instructions on lines 13 and 14 set their
values. (The space was allocated by the sub
on line 3 in the function prologue.)

Q6.4
2 Points

Label .L6 on line 17 begins the body of a loop. Which is the last

instruction corresponding to the loop's body in the C code? Note: a

C loop's body does not include the for(...) or while(...)

portion.

Q6.5
1 Point

Lines 20 and 21 are comparing values corresponding to which C

variable type?

Q6.6
1 Point

What is the purpose of Line 29 (ldr x0, [sp,24])?

Line 23: str x2, [sp, 24]

Line 25: ldr x2, [x2, 8]

Either Line 23 or Line 25, depending on whether the C loop is a

for or while loop.

Line 28: bne .L6

None of the above.

struct node

unsigned long

Node_T

struct list

List_T

"

"

"

"

"

"

"

"

"

"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

15 of 23 12/21/20, 10:10 PM

The last instruction that corresponds to the loop's purpose, as
opposed to loop control, is Line 23 (which saves curr as maxNode).

If the corresponding C code is structured like a standard while loop,
with the update step as the very last thing in the body, then Line 25
would also be inside the body, as that's the line that updates curr to
be curr->next. If the corresponding C code is a for loop, however, that
line is the third piece of the for(... ; ... ; ...) structure, and Line 23 is the
final one within the body.

In either case, the bne instruction comes after the conditional, and
thus Line 28 is part of the for or while structure, not the body.

So the best answer was the one that says it depends on the
corresponding C code's details, however either 23 or 25 could be
reasonable answers and thus earned partial credit.

On line 11, [x0] dereferences the function parameter -- so the
parameter must not be an unsigned long, instead we should think
whether it's a Node_T or a List_T (or another type of pointer, e.g., an
unsigned long*).

On line 12, [x1] dereferences the value that was gotten from line 11.
That wouldn't be possible if the function parameter were an unsigned
long* or pointer to another primitive. If the function parameter were a
Node_T, then the first dereference would give back its first field: an
unsigned long, and thus it wouldn't be possible to dereference again, so
that's also out. But if the function parameter were a List_T, then the first
dereference would give back its first field: a Node_T, and the second
dereference would give back the Node_T's first field: an unsigned long.

On line 13, the value loaded on line 12, which we now know is an
unsigned long, gets stored into [sp, 16]. Finally, on line 19, that value is
loaded into x0 to be used in the comparison and conditional branch that
the question asks about.

(One could do the same logic with the other operand of cmp as well.)

Q6.7
1 Point

Nothing is stored at [SP, 0], thus a reasonable space optimization

would be to move the data stored at stack offsets 8, 16, and 24 to 0,

8, and 16, instead, allowing us to change the first and penultimate

instructions of the function to sub sp, sp, 24 and

add sp, sp, 24 , respectively.

Q6.8
2 Points

The function List_mystery doesn't save or restore the value of

x30 . Choose the best answer for why this is okay:

Q7 Like Yen Sid from Fantasia.
16 Points

Copy the return value

Clean up a local variable

Restore a caller-saved register

Restore a callee-saved register

True

False

The function doesn't use the stack

The function doesn't use callee-saved registers

The function doesn't return a value

The function isn't recursive

The function doesn't call any other functions

"

"

"

"

"

"

"

"

"

"

"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

16 of 23 12/21/20, 10:10 PM

Loading from the stack doesn't change the value on
the stack, so there is no cleanup happening.

x0 is a caller saved register, but the value that is
being loaded in is not necessarily the value that it
originally held (which was stored at [sp, 8]), so this is
not necessarily restoring its original value.

x0 is not a callee-saved register.

Line 29 loads the value of a local variable into x0
before continuing on sequentially to the epilogue
and return. Since x0 is the register used for the
return value, this behavior is copying the value to be
returned into the appropriate register to return it.

AARCH64 requires that the stack pointer SP must be a multiple
of 16, so it is not possible to decrement it by 24 in the prologue.

x30 is set by the bl
instruction with the
address of the next
instruction after the bl.
x30 is referenced by the
ret instruction to do an
unconditional jump to the
address it contains.

Thus, if function f calls
function g and g calls
function h: when h
returns, x30 will be an
address in g -- and so the
ret from g would not go
back to f unless it is able
to be restored to the
value it had when g first
began!

But if a function doesn't
make any other function
calls (and doesn't
explicitly overwrite x30),
then x30 will retain the
correct address to return
to and does not need to
be saved to the stack.

Partial credit: recursive functions, by definition, make
function calls and thus must save and restore x30. But
the more general answer is the better answer.

This question will again be dealing with the code for List_mystery

from the previous Question, repeated here for convenience:

/* a Node_T is a member of a collection with an unsigned long as contents */
typedef struct node* Node_T;

struct node {
/* contents of node */
unsigned long payload;
/* next node in the list */

 Node_T next;
};

struct list {
/* head of the list */

 Node_T first;
/* number of nodes in the list */
unsigned long length;

};

/* a List_T is a collection of unsigned longs */
typedef struct list* List_T;

1 .global List_mystery
2 List_mystery:
3 sub sp, sp, 32
4 str x0, [sp,8]
5 ldr x1, [x0,8]
6 cmp x1, xzr
7 bne .L2
8 mov x0, 0
9 b .L3
10 .L2:
11 ldr x1, [x0]
12 ldr x2, [x1]
13 str x2, [sp,16]
14 str x1, [sp,24]
15 ldr x2, [x1,8]
16 b .L4
17 .L6:
18 ldr x3, [x2]
19 ldr x0, [sp,16]
20 cmp x3, x0
21 bls .L5
22 str x3, [sp,16]
23 str x2, [sp,24]
24 .L5:
25 ldr x2, [x2,8]

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

17 of 23 12/21/20, 10:10 PM

Here's the function in flattened C:

/* return pointer to the (first) node in l
 with the largest payload value,
 or NULL if l is empty */

Node_T List_mystery(List_T l) {
 unsigned long max; /* stored at [sp, 16] */
 Node_T maxNode; /* stored at [sp, 24] */
 Node_T curr; /* held in x2 */

 if(l->length != 0)
 goto L2;
 maxNode = NULL;
 goto L3;

L2:
 max = (l->first)->payload;
 maxNode = l->first;

 curr = l->first->next;
 goto L4;
L6:
 if(curr->payload <= max)
 goto L5;
 max = curr->payload;
 maxNode = curr;
L5:
 curr = curr->next;
L4:
 if(curr != NULL)
 goto L6;
L3:
 return maxNode;
}

26 .L4:
27 cmp x2, xzr
28 bne .L6
29 ldr x0, [sp,24]
30 .L3:
31 add sp, sp, 32
32 ret

Q7.1
16 Points

Translate the List_mystery function into "Flattened C", using the

same labels as the given assembly language code. Include a

function comment for List_mystery that meets the requirements

from your programming assignments in this course.

Enter your answer here

Q8 Avengers Disassemble!
9 Points

Consider the following objdump output:

armlab02$ objdump --disassemble --reloc simple.o

simple.o: file format elf64-littleaarch64

Disassembly of section .text:

0000000000000000 <main>:
 0: a9be7bfd stp x29, x30, [sp,#-32]!
 4: 910003fd mov x29, sp
 8: 90000000 adrp x0, 0 <main>

8: R_AARCH64_ADR_PREL_PG_HI21 .rodata
 c: 91000000 add x0, x0, #0x0

c: R_AARCH64_ADD_ABS_LO12_NC .rodata
 10: f9000fa0 str x0, [x29,#24]
 14: f9400fa0 ldr x0, [x29,#24]
 18: 94000000 bl 0 <strlen>

18: R_AARCH64_CALL26 strlen

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

18 of 23 12/21/20, 10:10 PM

Point allocation:
1: function return type `Node_T`.
2: function argument type `List_T` and syntax.
3: at least the three local variables
 `max`, `maxNode`, and `curr`.
 OK if extra variables for
 `l->first`, `l->first->payload`,
 or `curr->payload`.
4: `if` conditional + return setup.
 OK if conditional isn't inverted.
 OK if it does `return NULL;`
 directly instead of assigning
 and jumping to unified return.
5: `max` initialization.
6: `maxNode` initialization.
7: `curr` initialization: must start at l->first->next not l->first!
8: loop control labels and gotos (L4 and L6)
9: while loop condition
10: in-loop conditional + goto L5
11: update `max` and `maxNode`
12: L5 + update `curr`
13: `return maxNode`
14: comment mentions
 argument by name
15: comment mentions
 return + normal behavior
 (no need to specify tie case)
16: comment mentions
 return NULL for empty list

 1c: aa0003e1 mov x1, x0
 20: 90000000 adrp x0, 0 <main>

20: R_AARCH64_ADR_PREL_PG_HI21 .rodata+0x20
 24: 91000000 add x0, x0, #0x0

24: R_AARCH64_ADD_ABS_LO12_NC .rodata+0x20
 28: 94000000 bl 0 <printf>

28: R_AARCH64_CALL26 printf
 2c: 52800000 mov w0, #0x0 // #0
 30: a8c27bfd ldp x29, x30, [sp],#32
 34: d65f03c0 ret

Q8.1
1 Point

Does this output represent the full contents of simple.o ?

Q8.2
1 Point

What is 0: on the line beginning with that same prefix?

Q8.3
1 Point

What is 910003fd on the line prefixed with 4: ?

Yes

No

Assembly language code

Machine language code

Address

Offset

Relocation record

Data value

"

"

"

"

"

"

"

"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

19 of 23 12/21/20, 10:10 PM

simple.o also contains additional information, for example strings
defined in this file that are stored in the RODATA section.

A slightly different objdump command would show them:

armlab02$ objdump -s simple.o | head -n 12

simple.o: file format elf64-littleaarch64

Contents of section .text:
 0000 fd7bbea9 fd030091 00000090 00000091 .{..............
 0010 a00f00f9 a00f40f9 00000094 e10300aa @.........
 0020 00000090 00000091 00000094 00008052 R
 0030 fd7bc2a8 c0035fd6 .{...._.
Contents of section .rodata:
 0000 5a6f6f6d 20556e69 76657273 69747920 Zoom University
 0010 2d20434f 53203231 370a0000 00000000 - COS 217.......
 0020 4c656e67 74683a20 256c750a 00 Length: %lu..

These are offsets. .o files are generated by the assembler,
but final addresses cannot be generated until the link
stage.

Q8.4
1 Point

What is R_AARCH64_ADR_PREL_PG_HI21 .rodata on the (indented)

second line prefixed with 8: ?

Q8.5
1 Point

Which software produced the

R_AARCH64_ADR_PREL_PG_HI21 .rodata on the (indented) second

line prefixed with 8: ?

Assembly language code

Machine language code

Address

Offset

Relocation record

Data value

Assembly language code

Machine language code

Address

Offset

Relocation record

Data value

"

"

"

"

"

"

"

"

"

"

"

"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

20 of 23 12/21/20, 10:10 PM

This is machine language code:
the 8 hexits are shorthand for the 32 bits
of the machine language instruction as
seen in the final lecture.

Q8.6
1 Point

Which software is the intended consumer of the

R_AARCH64_ADR_PREL_PG_HI21 .rodata on the (indented) second

line prefixed with 8: ?

Q8.7
2 Points

Resolving a R_AARCH64_CALL26 construct could change which

byte(s) in the corresponding bl instruction? For this question, bytes

are numbered 0 (least significant) through 3 (most significant).

Preprocessor

Compiler

Assembler

Linker

Standard Library

Preprocessor

Compiler

Assembler

Linker

Standard Library

"

"

"

"

"

"

"

"

"

"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

21 of 23 12/21/20, 10:10 PM

Relocation records are produced by the assembler,
because it cannot yet know the final address that
extern data and functions will inhabit in the final
program's virtual memory.

The linker is responsible for handling relocation
records from the assembler and correcting
instructions that require the final (relative)
addresses in a program.

Q8.8
1 Point

While resolving a R_AARCH64_CALL26 construct, from where will the

machine code defining strlen or printf be sourced?

Q9 Dr. Moretti, not Rapunzel, has hidden it --
somewhere you'll never find it.
1 Point

Note any easter egg (sub-second flash image with a pop culture or

historical reference) from any COS 217 lecture video. As an

alternative, list any similarly tortured stretch of a pop culture or

historical reference given in a lecture's narration, even if it did not

make an appearance on the slides. (Feel free to list as many as you

All four (bytes 0-3)

The three least significant (bytes 0-2)

The two least significant (bytes 0-1)

The three most significant (bytes 1-3)

The two most significant (bytes 2-3)

Only a single byte

No change will be made by processing R_AARCH64_CALL26

simple.h

simple.c

simple.s

simple.o

libc.a or libc.so

string.h or stdio.h , respectively

strlen.o or printf.o , respectively

"

"

"

"

"

"

"

"

"

"

"

"

"

"

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

22 of 23 12/21/20, 10:10 PM

The three least significant bytes are
changed in their entirety (except for any
bits of the relative address that happen to
be 0).

But the most significant byte is also
changed in its lower order bits: the relative
address is 26 bits, which requires an
additional 2 bits beyond the 3 entire least
significant bytes, and thus 2 bits of the
most significant byte.

The functions strlen and printf are from the C standard library. The
standard library's object files, which contain (among other data) the
machine language instructions that these files define in the TEXT
section, are found in a well-defined location known to the linker.

In the case of static linking, which is all we've talked about in this
class, the object files are bundled together into an archive file: libc.a.
On armlab, that file is found at /usr/lib64/libc.a. (libc.so is a similar file
used in dynamic linking, in which the full set of object code is not
stored in the final executable, but instead referenced from the
executable to its place in the "shared object" file.)

noticed and recall -- for better or worse! -- but a single one will do

for the bonus point.)

Enter your answer here

Q10 The wonderful thing about Honor Codes
is Honor Codes are wonderful things
0 Points

Copy the Honor pledge in the field below:

I pledge my honor that I have not violated the Honor Code during

this examination.

Enter your answer here

Enter your name in the field below, attesting to the Honor pledge

you have copied above:

Enter your answer here

Submit & View Submission #

Submit COS 217 Final Exam | Gradescope https://www.gradescope.com/courses/213975/assignments/910562...

23 of 23 12/21/20, 10:10 PM

There were dozens, not even counting the theme of these exam question names. Popular responses included:
* Tributes to Chadwick Boseman, Alex Trebek, and Eddie Van Halen.
* Lyrics referenced by their singers, e.g. Elsa from Frozen (at least twice) and Uma from Descendants 2.
* Memes, e.g. Gru’s plan, Spiderman pointing at Spiderman, and Roll Safe.
* Movie/Show image references, e.g. LotR, Monty Python, Lady and the Tramp, Beethoven, Winnie-the-Pooh,
 Thomas the Tank Engine, and Downton Abbey.

