

 Midterm Exam Spring 2025

This exam consists of 4 substantive questions. You have 50 minutes – budget your time
wisely. Assume the ArmLab/gcc217 environment unless otherwise stated in a problem.

Do all of your work on these pages. You may use the provided blank spaces for scratch
space, however this exam is preprocessed by computer, so for your final answers to be
scored you must write them inside the designated spaces and fill in selected circles and
boxes completely (⚫ and ⬛, not ✔ or ✘). Please make text answers dark and neat.

Name: NetID:

Precept:

◯ P01 - MW 1:30
Xiaoyan Li

◯ P04 - TTh 12:30
Tolulope Oshinowo

◯ P08 TTh 3:30
Yang Duan

◯ P02 - MW 3:30
Xiaoyan Li

◯ P06 - TTh 1:30
Indu Panigrahi

◯ P09 TTh 7:30
Andrew Sheinberg

◯ P03 - TTh 12:30
Lana Glisic

◯ P07 - TTh 1:30
Ryan Oet

This is a closed-book, closed-note exam, except you are allowed one one-sided study
sheet. Please place items that you will not need out of view in your bag or under your
working space at this time. Electronic devices such as cell phones, laptops,
smartwatches except to check the time, etc. may not be used during this exam.

This examination is administered under the Princeton University Honor Code. Students
should sit one seat apart from each other and refrain from talking to other students
during the exam. All suspected violations of the Honor Code must be reported to
honor@princeton.edu.

In the box below, copy and sign the Honor Code pledge before turning in your exam:
“I pledge my honor that I have not violated the Honor Code during this examination.”

X_________________________________

Question 0: Dear Friends, 0 points

Please don’t make the course staff’s life harder: make sure you have filled out your
name, NetID (i.e., armlab login – not PUID, not email alias), precept and the Honor
Code pledge text on the front page. Sign your name once you have finished the exam.

Question 1: Portability after Retirement from the EQuad 5 points

For each of the code snippets below, indicate whether the equality operation always
evaluates to true (1), always evaluates to false (0), or depends on the system because
the behavior is not guaranteed by the C standard.

 TRUE FALSE DEPENDS

a. 031 == 31 ◯ ◯ ◯

b. sizeof(struct {long seas; int leader;})
== sizeof(long) + sizeof(int)

◯ ◯ ◯

c. enum { BSE };
BSE == 0

◯ ◯ ◯

d. int princeton, inn;
princeton = inn = 1983;
princeton++ == ++inn;

◯ ◯ ◯

e. int peter;
int bogucki;
&bogucki == &peter + 1

◯ ◯ ◯

(Hint: recall pointer addition is element-wise: + 1 is really + sizeof(int) bytes)

Question 2: Unique administrator 13 points

The C program on the next page is intended to implement a subset of the Linux uniq
tool, equivalent to uniq -c, by printing out each line from stdin but suppressing
subsequent adjacent duplicate lines and prepending each printed line with the total
number of adjacent copies. For example:

Input Output
Going back, 2 Going back,
Going back, 1 Going back to Nassau Hall.
Going back to Nassau Hall. 1
 2 Going back,
Going back, 1 To the best old place of all.
Going back,
To the best old place of all.

Page 2 of 8

#include <string.h>
#include <stdio.h>
int main(void) {
 enum {MAX_LINE_SIZE = 1024};
 char acLine1[MAX_LINE_SIZE], acLine2[MAX_LINE_SIZE];
 char *pcLineNew = acLine1;
 char *pcLineOld = acLine2;
 size_t uRepeatCount = 0;
 /* for each line of standard input */
 while(fgets(pcLineNew, MAX_LINE_SIZE, stdin) != NULL)
 /* if the new line matches the prior line */
 if(①) uRepeatCount++;
 else { /* print old line, if needed, and reset for new line */
 if(②) printf("%lu %s", uRepeatCount, pcLineOld);
 uRepeatCount = ③;
 /* Hint: ④ and ⑤ update the value of pcLineNew. */
 pcLineOld = pcLineNew;
 if(pcLineNew == acLine1) ④;
 else ⑤;
 }
 if(②) printf("%lu %s", uRepeatCount, pcLineOld);
 return 0;
}

There are five expressions (one of which appears twice) that have been omitted. In the
boxes below, fill in expressions that will correctly implement the specification on page 2:

a. ①

b. ②

c. ③

d. ④

 ⑤

Page 3 of 8

Question 3: Best Advising: Review and Correct 16 points

Each of the four functions below has one or more bugs. Each bug may be corrected by
replacing one line from the existing code or adding some extra code to the function. For
replacements, cross out the incorrect line in the box on the left and write the corrected
line in the box on the right. For insertions, add an arrow in the box on the left and write
the code to be inserted in the box on the right. Do not re-write lines that are already
correct. Assume that all necessary headers have been included.

For example:

 /* Print a plus b, return 0. */
int printSum(int a, int b) {
 <--------
 return a + b;
}

printf("%d", a + b);
return 0;

a. /* Return whether y is strictly
 between x and z. */
int twixt(int x, int y, int z) {
 return x <= y <= z;
}

b. /* return the location of the
first character in s1 that
differs from its counterpart in
s2, or NULL if the strings’
contents are the same */
char *diverge(const char* s1,
 const char* s2) {
 assert(s1 != NULL);
 assert(s2 != NULL);
 while(*s1 != '\0')
 if(*s1 == *s2) {
 s1++; s2++;
 }
 else
 return s1;

 return NULL;
}

Page 4 of 8

c. typedef struct Node* Node_T;
struct Node { Node_T next; };

/* return whether n is the
second-to-last node (i.e., the
node immediately before the last
node) in its list */
int penultimate(Node_T n) {
 assert(n != NULL);
 assert(n->next != NULL);
 return n->next->next == NULL;
}

d. /* expand ai, which has been
dynamically allocated with n
elements, to be twice as long.
Return the expanded array, or
NULL if memory allocation
returns NULL. */
int *twice(int ai[], size_t n) {
 assert(ai != NULL);
 ai = realloc(ai, 2 * n);
 return ai;
}

(The exam continues with Question 4 on page 6.)

Page 5 of 8

Question 4: Departmentistic Finite Automaton (FSA) 16 points

The admissions office wants to forward questions from BSE applicants to their potential
department. To do so, they’ve asked a COS 217 student to build a program that finds
messages that include the 3-letter strings that correspond to the six SEAS department
abbreviations (CBE, CEE, COS, ECE, MAE, and ORF).

The student has modeled this as a DFA. For each message, they will run each word
(one at a time, resetting between each) through the DFA until either a word is accepted,
at which time they will send the question to the named department, or until all words in
the message have been rejected.

Consider the DFA below, which should accept only 3-letter strings that correspond to
one of the six relevant department abbreviations. Assume that all transitions, if not
explicitly shown on the DFA, transition into the SINK state.

Questions about this DFA appear on page 7.

Page 6 of 8

For each question below, answer in the box provided.

a. Which is the start state? Identify it by name, e.g. SINK or E6.

b. What are all the accepting states? Identify them by name.

c. ECE changed name from ELE in 2021. What is the smallest change to the DFA

that would allow forwarding messages to ECE that have either ECE or ELE?
Answer in a sentence or draw any new/updated nodes and transitions in the box.

d. This DFA has 18 states (including the sink), but it can be done in 15. In one

sentence, clearly describe what changes would have to be made to do so. If you
prefer, instead of a sentence, you may draw the correct 15-state version on page
8 and state in the box that you have done so.

e. The 15 state version is equivalent to the 18 state version in terms of the strings it

accepts, but it has a key drawback if one were to use it for the question
forwarding purpose outlined above. In the box, describe in at most two sentences
why the smaller DFA is not suitable as the underlying design for this application:

Page 7 of 8

(Question 4 was the last question. The space below is intentionally left blank. You may
use it for scratch work, however any answers given below will not be graded, except if
you stated in Question 4 that you would draw your answer on this page.)

Page 8 of 8

	Question 0: Dear Friends, 0 points
	Question 1: Portability after Retirement from the EQuad 5 points
	Question 2: Unique administrator 13 points
	Question 3: Best Advising: Review and Correct 16 points
	
	
	Question 4: Departmentistic Finite Automaton (FSA) 16 points

