
COS320: Compiling Techniques

Zak Kincaid

February 6, 2020

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

After compilation

Assembly (.s) Assembly (.s)Assembly (.s)

Machine language (.o) Machine language (.o)Machine language (.o)

Linker

Executable (a.out)

Execution

Assembler

Loader

• Assember (as): translate assembly to object file (.o)
• Object file = machine code + headers for linking & loading

• Linker (ld): combine object files into an executable
• Concatenate data and text sections
• (Partial) symbol resolution: replace symbolic references with addresses
• Relocation: fix references to relocated addresses

• Loader (exec family): load executable into memory and transfer control
• Dynamic linking

Today: x86Lite

X86

• X86 is very complicated
• 8-, 16-, 32-, 64-bit values, floats, ...
• Hundreds or thousands of instructions (depending on how they’re counted)
• Variable-length encoding for instructions (1-17 bytes)

• X86lite is a simple subset, still suitable as a compilation target
• Values are 64-bit integers
• About 20 instructions
• Fixed-length encoding for instructions

X86

• X86 is very complicated
• 8-, 16-, 32-, 64-bit values, floats, ...
• Hundreds or thousands of instructions (depending on how they’re counted)
• Variable-length encoding for instructions (1-17 bytes)

• X86lite is a simple subset, still suitable as a compilation target
• Values are 64-bit integers
• About 20 instructions
• Fixed-length encoding for instructions

X86lite machine state

• Memory, consisting of 264 bytes
• Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]

(least significant byte least address)

0102030405060708

01

02

03

04

05

06

07

08 high address

low address

• 16 64-bit registers
• rax: general purpose accumulator

• rbx: base pointer, pointer to data

• rcx: counter register for strings & loops

• rdx: data register for I/O

• rsi: pointer register, string source register

• rdi: pointer register, string destination register

• rbp: base pointer, points to the stack frame

• rsp: stack pointer, points to the top of the stack

• r08-r15: general-purpose registers

• 3 flags (bits)
• OF: (“overflow”) set when result is too big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive, 1=negative)
• ZF: (“zero”) set when the result is 0

• rip: “virtual” register, points to current instruction
• rip is manipulated only by indirect jumps and return

X86lite machine state

• Memory, consisting of 264 bytes
• Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]

(least significant byte least address)
• 16 64-bit registers

• rax: general purpose accumulator

• rbx: base pointer, pointer to data

• rcx: counter register for strings & loops

• rdx: data register for I/O

• rsi: pointer register, string source register

• rdi: pointer register, string destination register

• rbp: base pointer, points to the stack frame

• rsp: stack pointer, points to the top of the stack

• r08-r15: general-purpose registers

• 3 flags (bits)
• OF: (“overflow”) set when result is too big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive, 1=negative)
• ZF: (“zero”) set when the result is 0

• rip: “virtual” register, points to current instruction
• rip is manipulated only by indirect jumps and return

X86lite machine state

• Memory, consisting of 264 bytes
• Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]

(least significant byte least address)
• 16 64-bit registers

• rax: general purpose accumulator

• rbx: base pointer, pointer to data

• rcx: counter register for strings & loops

• rdx: data register for I/O

• rsi: pointer register, string source register

• rdi: pointer register, string destination register

• rbp: base pointer, points to the stack frame

• rsp: stack pointer, points to the top of the stack

• r08-r15: general-purpose registers

• 3 flags (bits)
• OF: (“overflow”) set when result is too big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive, 1=negative)
• ZF: (“zero”) set when the result is 0

• rip: “virtual” register, points to current instruction
• rip is manipulated only by indirect jumps and return

X86lite machine state

• Memory, consisting of 264 bytes
• Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]

(least significant byte least address)
• 16 64-bit registers

• rax: general purpose accumulator

• rbx: base pointer, pointer to data

• rcx: counter register for strings & loops

• rdx: data register for I/O

• rsi: pointer register, string source register

• rdi: pointer register, string destination register

• rbp: base pointer, points to the stack frame

• rsp: stack pointer, points to the top of the stack

• r08-r15: general-purpose registers

• 3 flags (bits)
• OF: (“overflow”) set when result is too big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive, 1=negative)
• ZF: (“zero”) set when the result is 0

• rip: “virtual” register, points to current instruction
• rip is manipulated only by indirect jumps and return

Anatomy of an x86lite progam

f a c t o r i a l :
cmpq %r d i , $0
j e . L 4
movq $1 , %r a x
movq $0 , %rdx

. L 3 :
imulq %rdx , %r a x
addq $1 , %rdx
cmpq %rdx , %r d i
j ne . L 3
r e t q

. L 4 :
movq $1 , %r a x
r e t q

BlocksLabels

Anatomy of an x86lite progam

f a c t o r i a l :
cmpq %r d i , $0
j e . L 4
movq $1 , %r a x
movq $0 , %rdx

. L 3 :
imulq %rdx , %r a x
addq $1 , %rdx
cmpq %rdx , %r d i
j ne . L 3
r e t q

. L 4 :
movq $1 , %r a x
r e t q

Blocks

Labels

Anatomy of an x86lite progam

f a c t o r i a l :
cmpq %r d i , $0
j e . L 4
movq $1 , %r a x
movq $0 , %rdx

. L 3 :
imulq %rdx , %r a x
addq $1 , %rdx
cmpq %rdx , %r d i
j ne . L 3
r e t q

. L 4 :
movq $1 , %r a x
r e t q

Blocks

Labels

X86Lite instructions

• Instruction = opcode + operand list
• AT&T syntax: movq $42, %rax stores the number 42 in rax

• $ prefix denotes immediate (constant)
• % prefix denotes register
• q suffix denote quadword

• Intel notation: mov rax 42
• Swap source & destination
• No prefixes / suffixes

• Opcodes (full specification on course webpage)
• Arithmetic: addq, imulq, subq, negq, incq, decq
• Logic: andq, orq, notq, xorq
• Bit-manipulation: sarq, shlq, shrq, setb
• Data-movement: leaq, movq, pushq, popq
• Control flow: cmpq, jmp, callq, retq, j CC

X86Lite instructions

• Instruction = opcode + operand list
• AT&T syntax: movq $42, %rax stores the number 42 in rax

• $ prefix denotes immediate (constant)
• % prefix denotes register
• q suffix denote quadword

• Intel notation: mov rax 42
• Swap source & destination
• No prefixes / suffixes

• Opcodes (full specification on course webpage)
• Arithmetic: addq, imulq, subq, negq, incq, decq
• Logic: andq, orq, notq, xorq
• Bit-manipulation: sarq, shlq, shrq, setb
• Data-movement: leaq, movq, pushq, popq
• Control flow: cmpq, jmp, callq, retq, j CC

X86Lite Operands

• Imm (“immediate”) 64-bit literal signed integer
• 42, 0x3de7

• Lbl (“label”) symbolic machine address (to be resolved by assembler/linker/loader)
• _factorial, .L2

• Reg (“register”)
• %rax, %r04

• Ind (“indirect”) memory address
• (%rax), -8(%rbp)

X86 Addressing

• Three components of an indirect address: Disp(Base, Index, Scale)
• Base: a machine address stored in a register
• Index & Scale: a variable offset from the base (not in x86lite)
• Disp: displacement/offset (optional)

• Refers to the location Mem[Base + Index * Scale + Disp]
• movq (%rsp), %rax retrieves Mem[rsp] and stores it in rax
• movq -8(%rsp), %rax retrieves Mem[rsp - 8] and stores it in rax
• movq %rax, (%rsp) stores value of rax in Mem[rsp].

Control flow

• Three condition flags:
• OF: (“overflow”) set when result is to big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive,1=negative)
• ZF: (“zero”) set when the result is 0

• Instruction cmpq SRC1, SRC2: compute SRC2-SRC1 and set flags
• Instruction j CC SRC: jump if to SRC if condition code CC is set

• e (“equality”): ZF set
• ne (“inequality”): ZF clear
• g (“greater than”): SF clear and ZF clear
• l (“less than”): SF not equal to OF
• ge (“greater than or equal”): SF clear
• le (“less than or equal”): SF not equal to OF or ZF set

Control flow

• Three condition flags:
• OF: (“overflow”) set when result is to big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive,1=negative)
• ZF: (“zero”) set when the result is 0

• Instruction cmpq SRC1, SRC2: compute SRC2-SRC1 and set flags

• Instruction j CC SRC: jump if to SRC if condition code CC is set
• e (“equality”): ZF set
• ne (“inequality”): ZF clear
• g (“greater than”): SF clear and ZF clear
• l (“less than”): SF not equal to OF
• ge (“greater than or equal”): SF clear
• le (“less than or equal”): SF not equal to OF or ZF set

Control flow

• Three condition flags:
• OF: (“overflow”) set when result is to big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive,1=negative)
• ZF: (“zero”) set when the result is 0

• Instruction cmpq SRC1, SRC2: compute SRC2-SRC1 and set flags
• Instruction j CC SRC: jump if to SRC if condition code CC is set

• e (“equality”): ZF set
• ne (“inequality”): ZF clear
• g (“greater than”): SF clear and ZF clear
• l (“less than”): SF not equal to OF
• ge (“greater than or equal”): SF clear
• le (“less than or equal”): SF not equal to OF or ZF set

Conventions

Memory layout

Code & Data

Stack

Heap

0x00000000

0xffffffff

rsp

Grows up
(lower addresses)

Stack operations

• %rsp: pointer to the top of the stack
• pushq SRC

rsp := rsp - 8
Mem[rsp] := SRC

• popq DEST
DEST := Mem[rsp]
rsp := rsp + 8

• callq SRC
pushq rip
rip := SRC

• retq
popq rip

Calling conventions

• Implementation of function calls is up to the compiler
• How are parameters passed?
• How is return value passed back?
• How is the return address stored?
• Which registers is a function allowed to change?

• caller save: freely usable by called code
• callee save: must be restored by called code

• A calling convention is a contract that specifies the structure of the stack and the interface
between function caller and callee

• Useful to standardize on a single convention across the whole system
• x86-64 AMD System V ABI on 64-bit x86
• cdecl (“C declaration”) on 32-bit x86

Calling conventions

• Implementation of function calls is up to the compiler
• How are parameters passed?
• How is return value passed back?
• How is the return address stored?
• Which registers is a function allowed to change?

• caller save: freely usable by called code
• callee save: must be restored by called code

• A calling convention is a contract that specifies the structure of the stack and the interface
between function caller and callee

• Useful to standardize on a single convention across the whole system
• x86-64 AMD System V ABI on 64-bit x86
• cdecl (“C declaration”) on 32-bit x86

Calling conventions

• Implementation of function calls is up to the compiler
• How are parameters passed?
• How is return value passed back?
• How is the return address stored?
• Which registers is a function allowed to change?

• caller save: freely usable by called code
• callee save: must be restored by called code

• A calling convention is a contract that specifies the structure of the stack and the interface
between function caller and callee

• Useful to standardize on a single convention across the whole system
• x86-64 AMD System V ABI on 64-bit x86
• cdecl (“C declaration”) on 32-bit x86

The call stack

• Function calls are implemented using a stack of
activation records (aka stack frames)

• Each activation record contains:
• Frame pointer (start address of previous frame)
• Local variables

• Except for current frame, also contains:
• Actual parameters (arguments)
• Return address

...

rsp

rbp
frame pointer

frame pointer

return address

actual parameters

locals

locals

Caller protocol

Suppose we call function with parameters v1, ..., vn

1 Save caller-save registers, if needed
2 Store first six actual parameters v1, ..., v6 in rdi, rsi, rdx, rcx, r08, r09
3 Push vn,...,v7

• nth actual parameter is located at Mem[rbp + 8*(n-5)]

4 Use callq to jump to the code for f (& push return address)

After call:
1 De-allocate pushed actual parameters
2 Restore caller-save registers, if needed

Caller protocol

Suppose we call function with parameters v1, ..., vn

1 Save caller-save registers, if needed
2 Store first six actual parameters v1, ..., v6 in rdi, rsi, rdx, rcx, r08, r09
3 Push vn,...,v7

• nth actual parameter is located at Mem[rbp + 8*(n-5)]

4 Use callq to jump to the code for f (& push return address)
After call:

1 De-allocate pushed actual parameters
2 Restore caller-save registers, if needed

Callee protocol

On entry:
1 Save old frame pointer (rbp is callee-save)
2 Set rbp to point to current frame
3 Allocate local storage

On exit:
1 Store return value in rax

2 Deallocate local storage
3 Restore previous rbp

Callee protocol

On entry:
1 Save old frame pointer (rbp is callee-save)
2 Set rbp to point to current frame
3 Allocate local storage

On exit:
1 Store return value in rax

2 Deallocate local storage
3 Restore previous rbp

f a c t o r i a l :
cmpq %r d i , $0
j l e . L 4
movq $1 , %r a x
movq $1 , %rdx

. L 3 :
imulq %rdx , %r a x
addq $1 , %rdx
cmpq %rdx , %r d i
j ne . L 3
r e t q

. L 4 :
movq $1 , %r a x
r e t q

long f a c t o r i a l (long n) {
long i ;
long r e s u l t = 1 ;
f o r (i = 1 ; i < n ; i + +) {

r e s u l t *= i ;
}
r e t u r n r e s u l t ;

}

x86-64 System V AMD 64 ABI

• Callee-save: rbp, rbx, r12-r15
• Caller-save: all others
• Store return value in rax (second return value in rdx)
• Parameters:

• Parameters 1-6 in rdi, rsi, rdx, rcx, r08, r09
• Parameters 7-n in 16(rbp), 24(rbp), ... (8*(n-5))(rbp)

• 128 byte “red zone” below rsp
• Not modified by signal / interrupt handlers
• Useful for storing local data of leaf functions

