
COS320: Compiling Techniques

Zak Kincaid

March 25, 2024

Parsing III: LR parsing

Bottom-up parsing

• Stack holds a word in (N ∪ Σ)∗ such that it is possible to derive the part of the input string that has
been consumed from its reverse.

• At any time, may read a letter from input string and push it on top of the stack
• At any time, may non-deterministically choose a rule A ::= γ1...γn and apply it in reverse: pop

γn...γ1 off the top of the stack, and push A.
• Accept when stack just contains start non-terminal

<S> ::= +<S> |
 ::= (<S>) | x

q0start q1 qf
ϵ, ϵ → $ ϵ, <S>$ → ϵ

(, ϵ → (
), ϵ →)
+, ϵ → +
x, ϵ → x

ϵ, <S>+ → <S>
ϵ, → <S>
ϵ,)<S>(→
ϵ, x →

<S> ::= +<S> |
 ::= (<S>) | x

q0start q1 qf
ϵ, ϵ → $ ϵ, <S>$ → ϵ

(, ϵ → (
), ϵ →)
+, ϵ → +
x, ϵ → x

ϵ, <S>+ → <S>
ϵ, → <S>
ϵ,)<S>(→

ϵ, x →

State Stack Input
q0 ϵ (x+x)+x
q1 $ (x+x)+x
q1 ($ x+x)+x
q1 x($ +x)+x
q1 ($ +x)+x
q1 +($ x)+x
q1 x+($)+x
q1 +($)+x
q1 <S>+($)+x
q1 <S>($)+x
q1)<S>($ +x
q1 $ +x
q1 +$ x
q1 x+$ ϵ
q1 +$ ϵ
q1 <S>+$ ϵ
q1 <S>$ ϵ
qf ϵ ϵ

LL vs LR

• LL parsers are top-down, LR parsers are bottom-up
• Easier to write LR grammars

• Every LL(k) grammar is also LR(k), but not vice versa.
• No need to eliminate left (or right) recursion
• No need to left-factor

• Harder to write LR parsers
• But parser generators will do it for us!

Bottom-up PDA has two kinds of actions:
• Shift: move lookahead token to the top of the stack
• Reduce: remove γn, ..., γ1 from the top of the stack, replace with A (where A ::= γ1...γn is

a rule of the grammar)
• Just as for LL parsing, the trick is to resolve non-determinism.

• When should the parser shift?
• When should the parser reduce?

<S> ::= +<S> |
 ::= (<S>) | x

q0start q1 qf
ϵ, ϵ → $ ϵ, <S>$ → ϵ

(, ϵ → (
), ϵ →)
+, ϵ → +
x, ϵ → x

ϵ, <S>+ → <S>
ϵ, → <S>
ϵ,)<S>(→
ϵ, x →

Roadmap to LR parsing

1 “Greedy” determinization: warm-up (not examinable material)
2 LR(0): LR parsing with 0 tokens of lookahead – not used in practice.
3 SLR (Simple LR): LR(0) + lookahead to resolve some nondeterminism
4 LR(1): Add one token of lookahead to LR construction
5 LALR(1): simple, practical optimization of LR(1) (but less powerful!)

Determinizing the bottom-up PDA

• Intuition: reduce greedily
• If any reduce action applies, then apply it

• Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to
the input word being accepted)

• If no reduce action applies, then shift
• Can use the states of the PDA to implement greedy strategy

• State tracks top few symbols of the stack – enough to know if a reduction rule applies.

<S’> ::= <S>$

<S> ::= a<S>a | b

q0start $
ϵ, ϵ → $

b

aa

b, ϵ → b

a, ϵ → a

a, ϵ → a

b, ϵ → b

<S>?
ϵ, b → <S>

S is on top of the stack, but what’s underneath?

<S>a

<S>$

ϵ, ba → <S>a

ϵ, b$ → <S>$

a<S>a

a, ϵ → a

ϵ, a<S>aa → <S>a

ϵ, a<S>a$ → <S>$

<S’> ::= <S>$

<S> ::= a<S>a | b

q0start $
ϵ, ϵ → $

b

aa

b, ϵ → b

a, ϵ → a

a, ϵ → a

b, ϵ → b

<S>?
ϵ, b → <S>

S is on top of the stack, but what’s underneath?

<S>a

<S>$

ϵ, ba → <S>a

ϵ, b$ → <S>$

a<S>a

a, ϵ → a

ϵ, a<S>aa → <S>a

ϵ, a<S>a$ → <S>$

<S’> ::= <S>$

<S> ::= a<S>a | b

q0start $
ϵ, ϵ → $

b

aa

b, ϵ → b

a, ϵ → a

a, ϵ → a

b, ϵ → b

<S>?
ϵ, b → <S>

S is on top of the stack, but what’s underneath?

<S>a

<S>$

ϵ, ba → <S>a

ϵ, b$ → <S>$

a<S>a

a, ϵ → a

ϵ, a<S>aa → <S>a

ϵ, a<S>a$ → <S>$

<S’> ::= <S>$

<S> ::= a<S>a | b

q0start $
ϵ, ϵ → $

b

aa

b, ϵ → b

a, ϵ → a

a, ϵ → a

b, ϵ → b

<S>?
ϵ, b → <S>

S is on top of the stack, but what’s underneath?

<S>a

<S>$

ϵ, ba → <S>a

ϵ, b$ → <S>$

a<S>a

a, ϵ → a

ϵ, a<S>aa → <S>a

ϵ, a<S>a$ → <S>$

<S’> ::= <S>$

<S> ::= a<S>a | b

q0start $
ϵ, ϵ → $

b

aa

b, ϵ → b

a, ϵ → a

a, ϵ → a

b, ϵ → b

<S>?
ϵ, b → <S>

S is on top of the stack, but what’s underneath?

<S>a

<S>$

ϵ, ba → <S>a

ϵ, b$ → <S>$

a<S>a

a, ϵ → a

ϵ, a<S>aa → <S>a

ϵ, a<S>a$ → <S>$

<S’> ::= <S>$

<S> ::= a<S>a | b

q0start $
ϵ, ϵ → $

b

aa

b, ϵ → b

a, ϵ → a

a, ϵ → a

b, ϵ → b

<S>?
ϵ, b → <S>

S is on top of the stack, but what’s underneath?

<S>a

<S>$

ϵ, ba → <S>a

ϵ, b$ → <S>$

a<S>a

a, ϵ → a

ϵ, a<S>aa → <S>a

ϵ, a<S>a$ → <S>$

<S’> ::= <S>$

<S> ::= a<S>a | b

q0start $
ϵ, ϵ → $

b

aa

b, ϵ → b

a, ϵ → a

a, ϵ → a

b, ϵ → b

<S>?
ϵ, b → <S>

S is on top of the stack, but what’s underneath?

<S>a

<S>$

ϵ, ba → <S>a

ϵ, b$ → <S>$

a<S>a

a, ϵ → a

ϵ, a<S>aa → <S>a

ϵ, a<S>a$ → <S>$

LR parsing

• Greedy strategy matches right-hand-sides of all rules against the top of the stack
• Consider <S> ::= <A>, <A> ::= a, ::= a
• a on top of stack ⇒ conflict between reductions <A> ::= a and ::= a

• LR parsing is partially greedy: only apply reduction action if it is “relevant” (can eventually
lead to the input word being accepted)

• E.g., apply <A> ::= a reduction to the first a that we push on the stack, but not the second.

• LR(k) = LR with k-symbol lookahead

LR(0) parsing

<S> ::= (<L>) | x
<L> ::= <S> | <L>;<S>

• An LR(0) item of a grammar G = (N,Σ,R,S) is of the form A ::= γ1...γi • γi+1...γn,
where A ::= γ1· · · γn is a rule of G

• γ1...γi derives part of the word that has already been read
• γi+1...γn derives part of the word that remains to be read
• LR(0) items ∼ states of an NFA that determines when a reduction applies to the top of the

stack
• LR(0) items for the above grammar:

• <S> ::= •(<L>), <S> ::= (•<L>), <S> ::= (<L>•), <S> ::= (<L>)•,
• <S> ::= •x, <S> ::= x•,
• <L> ::= •<S>, <L> ::= <S>•,
• <L> ::= •<L>;<S>, <L> ::= <L>•;<S>, <L> ::= <L>;•<S>, <L> ::= <L>;<S>•,

closure and goto

• For any set of items I, define closure(I) to be the least set of items such that
• closure(I) contains I
• If closure(I) contains an item of the form A ::= α • Bβ where B is a non-terminal, then

closure(I) contains B ::= •γ for all B ::= γ ∈ R
• closure(I) saturates I with all items that may be relevant to reducing via I

• E.g., closure({<S> ::= (•<L>)}) =
{<S> ::= (•<L>), <L> ::= •<S>, <L> ::= •<L>;<S>, <S> ::= •(<L>)<S> ::= •x}

• Part of the not-quite greedy strategy: don’t try to reduce using all rules all the time, track only
a relevant subset

• For any item set I, and (terminal or non-terminal) symbol γ ∈ N ∪ Σ define
goto(I, γ) = closure({A ::= αγ • β | A ::= α • γβ ∈ I})

• I.e., goto(I, γ) is the result of “moving • across γ”
• E.g., goto(closure({<S> ::= (•<L>)}), <L>) = {<S> ::= (<L>•), <L> ::= <L>•;<S>, }

closure and goto

• For any set of items I, define closure(I) to be the least set of items such that
• closure(I) contains I
• If closure(I) contains an item of the form A ::= α • Bβ where B is a non-terminal, then

closure(I) contains B ::= •γ for all B ::= γ ∈ R
• closure(I) saturates I with all items that may be relevant to reducing via I

• E.g., closure({<S> ::= (•<L>)}) =
{<S> ::= (•<L>), <L> ::= •<S>, <L> ::= •<L>;<S>, <S> ::= •(<L>)<S> ::= •x}

• Part of the not-quite greedy strategy: don’t try to reduce using all rules all the time, track only
a relevant subset

• For any item set I, and (terminal or non-terminal) symbol γ ∈ N ∪ Σ define
goto(I, γ) = closure({A ::= αγ • β | A ::= α • γβ ∈ I})

• I.e., goto(I, γ) is the result of “moving • across γ”
• E.g., goto(closure({<S> ::= (•<L>)}), <L>) = {<S> ::= (<L>•), <L> ::= <L>•;<S>, }

Mechanical construction of LR(0) parsers

1 Add a new production S′ ::= S$ to the grammar.
• S′ is new start symbol
• $ marks end of word

2 Stack alphabet = closed item sets, starting with closure({S′ ::= •S$})
3 Construct transitions as follows: for each closed item set I,

• For each item of the form A ::= γ1...γn• in I, add reduce transition

ϵ, IJ1...Jn−1K → K′K, whereK′ = goto(K,A)

• For each item of the form A ::= γ • aβ in I with a ∈ Σ, add a shift transition

a, I → I′I where I′ = goto(I, a)

Resulting automaton is deterministic ⇐⇒ grammar is LR(0)

Conflicts

• Recall: Automaton is deterministic ⇐⇒ grammar is LR(0)
• Two different types of transitions:

• Reduce transitions, from items of the form A ::= γ•
• Shift transitions, from items of the form A ::= γ • aβ, where a is a terminal
• (No transitions generated by items of the formu A ::= γ • Aβ where A is a non-terminal)

• Reduce/reduce conflict: state has two or more items of the form A ::= γ• (choice of
reduction is non-deterministic!)

• Shift/reduce conflict: state has an item of the form A ::= γ• and one of the form
A ::= γ • aβ (choice of whether to shift or reduce is non-deterministic!)

Conflicts

• Recall: Automaton is deterministic ⇐⇒ grammar is LR(0)
• Two different types of transitions:

• Reduce transitions, from items of the form A ::= γ•
• Shift transitions, from items of the form A ::= γ • aβ, where a is a terminal
• (No transitions generated by items of the formu A ::= γ • Aβ where A is a non-terminal)

• Reduce/reduce conflict: state has two or more items of the form A ::= γ• (choice of
reduction is non-deterministic!)

• Shift/reduce conflict: state has an item of the form A ::= γ• and one of the form
A ::= γ • aβ (choice of whether to shift or reduce is non-deterministic!)

Conflicts

• Recall: Automaton is deterministic ⇐⇒ grammar is LR(0)
• Two different types of transitions:

• Reduce transitions, from items of the form A ::= γ•
• Shift transitions, from items of the form A ::= γ • aβ, where a is a terminal
• (No transitions generated by items of the formu A ::= γ • Aβ where A is a non-terminal)

• Reduce/reduce conflict: state has two or more items of the form A ::= γ• (choice of
reduction is non-deterministic!)

• Shift/reduce conflict: state has an item of the form A ::= γ• and one of the form
A ::= γ • aβ (choice of whether to shift or reduce is non-deterministic!)

Simple LR (SLR)

• Simple LR is a straight-forward extension of LR(0) with a lookahead token
• Idea: proceed exactly as LR(0), but eliminate (some) conflicts using lookahead token

• For each item of the form A ::= γ1...γn• in I, add reduce transition

ϵ, IJ1...Jn−1K → K′K, whereK′ = goto(K,A)

with any lookahead token in follow(A)

• Example: the following grammar is SLR, but not LR(0)

<S> ::= <T>b

<T> ::= a<T> | ϵ

Consider: closure({<S’> ::= •<S>$}) contains <T> ::= • and <T> ::= •a<T>.
• SLR parser generators: Jison

Simple LR (SLR)

• Simple LR is a straight-forward extension of LR(0) with a lookahead token
• Idea: proceed exactly as LR(0), but eliminate (some) conflicts using lookahead token

• For each item of the form A ::= γ1...γn• in I, add reduce transition

ϵ, IJ1...Jn−1K → K′K, whereK′ = goto(K,A)

with any lookahead token in follow(A)

• Example: the following grammar is SLR, but not LR(0)

<S> ::= <T>b

<T> ::= a<T> | ϵ

Consider: closure({<S’> ::= •<S>$}) contains <T> ::= • and <T> ::= •a<T>.
• SLR parser generators: Jison

LR(1) parser construction

• LR(1) parser generators: Menhir, Bison
• An LR(1) item of a grammar G = (N,Σ,R,S) is of the form (A ::= γ1...γi • γi+1...γn, a),

where A ::= γ1· · · γn is a rule of G and a ∈ Σ
• γ1...γi derives part of the word that has already been read
• γi+1...γn derives part of the word that remains to be read
• a is a lookahead symbol

• For any set of items I, define closure(I) to be the least set of items such that
• closure(I) contains I
• If closure(I) contains an item of the form (A ::= α • Bβ, a) where B is a non-terminal, then

closure(I) contains (B ::= •γ, b) for all B ::= γ ∈ R and all b ∈ first(βa).
• Construct PDA as in LR(0)

LALR(1)

• LR(1) transition tables can be very large
• LALR(1) (“lookahead LR(1)”) make transition table smaller by merging states (that is, closed

itemsets) that are identical except for lookahead
• Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this

merging doesn’t create conflicts.
• LALR(1) parser generators: Bison, Yacc, ocamlyacc, Jison

Summary of parsing

• For any k, LL(k) grammars are LR(k)
• SLR grammars are LALR(1) are LR(1)

• In terms of language expressivity, there is an SLR (and therefore LALR(1) and LR(1) grammar
for any context-free language that can be accepted by a deterministic pushdown
automaton).

• Not every deterministic context free language is LL(k): {anbn : n ∈ N} ∪ {ancn : n ∈ N} is
DCFL but not LL(k) for any k.1

1John C. Beatty, Two iteration theorems for the LL(k) Languages

