# COS320: Compiling Techniques

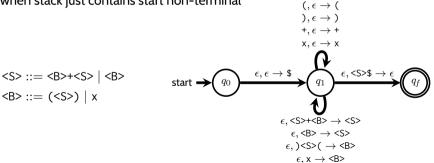
Zak Kincaid

March 25, 2024

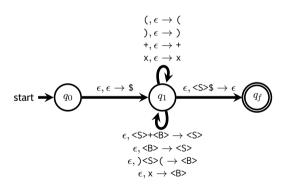
Parsing III: LR parsing

### Bottom-up parsing

- Stack holds a word in (N ∪ Σ)\* such that it is possible to derive the part of the input string that has been consumed from its reverse.
- At any time, may read a letter from input string and push it on top of the stack
- At any time, may non-deterministically choose a rule  $A ::= \gamma_1 ... \gamma_n$  and apply it in reverse: pop  $\gamma_n ... \gamma_1$  off the top of the stack, and push A.
- Accept when stack just contains start non-terminal



| State            | Stack              | Input      |
|------------------|--------------------|------------|
| $q_0$            | $\epsilon$         | (x+x)+x    |
| $q_1$            | \$                 | (x+x)+x    |
| $q_1$            | (\$                | x+x)+x     |
| $q_1$            | ×(\$               | +x)+x      |
| $q_1$            | <b>(\$</b>         | +x)+x      |
| $q_1$            | + <b>(\$</b>       | x)+x       |
| $q_1$            | x+ <b>(\$</b>      | )+x        |
| $q_1$            | <b>+<b>(\$</b></b> | )+x        |
| $q_1$            | <s>+<b>(\$</b></s> | )+x        |
| $q_1$            | <s>(\$</s>         | )+x        |
| $q_1$            | ) <s>(\$</s>       | +x         |
| $q_1$            | <b>\$</b>          | +x         |
| $q_1$            | + <b>\$</b>        | х          |
| $q_1$            | x+ <b>\$</b>       | $\epsilon$ |
| $\overline{q}_1$ | <b>+<b>\$</b></b>  | $\epsilon$ |
| $q_1$            | <s>+<b>\$</b></s>  | $\epsilon$ |
| $q_1$            | <s>\$</s>          | $\epsilon$ |
| $q_f$            | $\epsilon$         | $\epsilon$ |

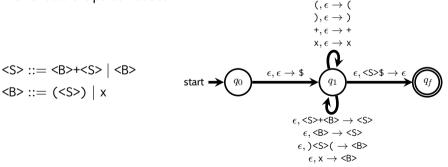


#### LL vs LR

- LL parsers are top-down, LR parsers are bottom-up
- Easier to write LR grammars
  - Every LL(k) grammar is also LR(k), but not vice versa.
  - No need to eliminate left (or right) recursion
  - No need to left-factor
- Harder to write LR parsers
  - But parser generators will do it for us!

Bottom-up PDA has two kinds of actions:

- *Shift*: move lookahead token to the top of the stack
- *Reduce*: remove  $\gamma_n, ..., \gamma_1$  from the top of the stack, replace with A (where  $A ::= \gamma_1 ... \gamma_n$  is a rule of the grammar)
- Just as for LL parsing, the trick is to resolve non-determinism.
  - When should the parser shift?
  - When should the parser reduce?

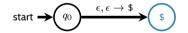


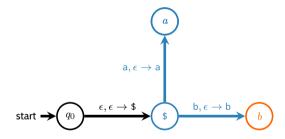
### Roadmap to LR parsing

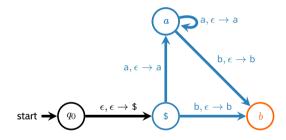
- Greedy" determinization: warm-up (not examinable material)
- 2 LR(0): LR parsing with 0 tokens of lookahead not used in practice.
- 3 SLR (Simple LR): LR(0) + lookahead to resolve some nondeterminism
- **4** LR(1): Add one token of lookahead to LR construction
- 5 LALR(1): simple, practical optimization of LR(1) (but less powerful!)

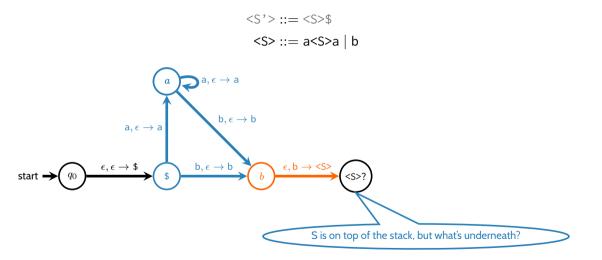
### Determinizing the bottom-up PDA

- Intuition: reduce greedily
  - If any reduce action applies, then apply it
    - Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
  - If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
  - State tracks top few symbols of the stack enough to know if a reduction rule applies.

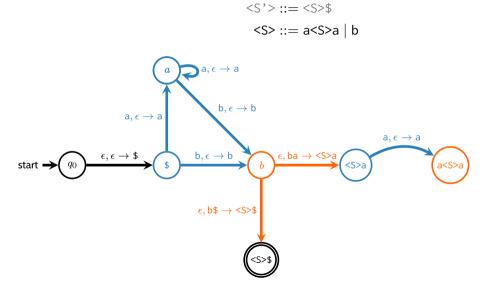


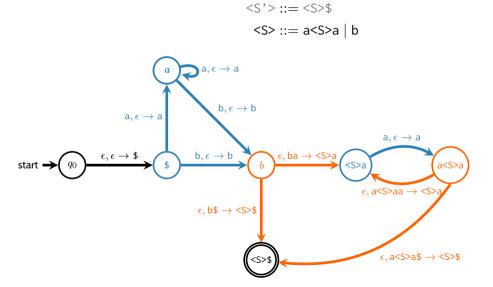












## LR parsing

- Greedy strategy matches right-hand-sides of *all* rules against the top of the stack
  - Consider <S> ::= <A><B>, <A> ::= a, <B> ::= a
  - a on top of stack  $\Rightarrow$  conflict between reductions <A> ::= a and <B> ::= a
- *LR* parsing is *partially* greedy: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
  - E.g., apply <A> ::= a reduction to the *first* a that we push on the stack, but not the *second*.
- *LR*(*k*) = LR with *k*-symbol lookahead

### LR(0) parsing

- An LR(O) item of a grammar  $G = (N, \Sigma, R, S)$  is of the form  $A ::= \gamma_1 ... \gamma_i \bullet \gamma_{i+1} ... \gamma_n$ , where  $A ::= \gamma_1 ... \gamma_n$  is a rule of G
  - $\gamma_1 ... \gamma_i$  derives part of the word that has already been read
  - $\gamma_{i+1}...\gamma_n$  derives part of the word that remains to be read
  - LR(O) items  $\sim$  states of an NFA that determines when a reduction applies to the top of the stack
- LR(O) items for the above grammar:
  - <S> ::= •(<L>), <S> ::= (•<L>), <S> ::= (<L>•), <S> ::= (<L>)•,
  - <S> ::= •x, <S> ::= x•,
  - <L> ::= ●<S>, <L> ::= <S>●,
  - <L> ::= •<L>;<S>,<L> ::= <L>;<S>,<L> ::= <L>;•<S>,<L> ::= <L>;•<S>,<L> ::= <L>;+S>,<L> ::= <L>;+S := <L>

#### closure and goto

- For any set of items *I*, define closure(*I*) to be the least set of items such that
  - closure(I) contains I
  - If closure(I) contains an item of the form  $A ::= \alpha \bullet B\beta$  where B is a non-terminal, then closure(I) contains  $B ::= \bullet \gamma$  for all  $B ::= \gamma \in R$
- closure(I) saturates I with all items that may be relevant to reducing via I

• E.g., closure({ ~~::= (
$$\bullet$$
)}) = { ~~::= ( $\bullet$ ),  ::=  $\bullet$ ~~,  ::=  $\bullet$ ; ~~,  ~~::=  $\bullet$ () ~~::=  $\bullet$~~~~~~~~~~~~ 

• Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset

#### closure and goto

- For any set of items *I*, define closure(*I*) to be the least set of items such that
  - closure(I) contains I
  - If closure(I) contains an item of the form  $A ::= \alpha \bullet B\beta$  where B is a non-terminal, then closure(I) contains  $B ::= \bullet \gamma$  for all  $B ::= \gamma \in R$
- closure(I) saturates I with all items that may be relevant to reducing via I
  - E.g., closure( $\{ <S > ::= ( \bullet <L >) \}$ ) =
    - $\{<\!\!S\!\!> ::= (\bullet<\!\!L\!\!>), <\!\!L\!\!> ::= \bullet<\!\!S\!\!>, <\!\!L\!\!> ::= \bullet<\!\!L\!\!>; <\!\!S\!\!>, <\!\!S\!\!> ::= \bullet(<\!\!L\!\!>)<\!\!S\!\!> ::= \bullet\!x\}$
  - Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset
- For any item set *I*, and (terminal or non-terminal) symbol  $\gamma \in N \cup \Sigma$  define  $goto(I, \gamma) = closure(\{A ::= \alpha \gamma \bullet \beta \mid A ::= \alpha \bullet \gamma \beta \in I\})$ 
  - I.e.,  $goto(I, \gamma)$  is the result of "moving across  $\gamma$ "
  - E.g., goto(closure({<S> ::= (•<L>)}), <L>) = {<S> ::= (<L>•), <L> ::= <L>•; <S>, }

#### Mechanical construction of LR(0) parsers

- **1** Add a new production S' ::= S to the grammar.
  - S' is new start symbol
  - \$ marks end of word
- 2 Stack alphabet = closed item sets, starting with  $closure(\{S' ::= \bullet S\})$
- 3 Construct transitions as follows: for each closed item set I,
  - For each item of the form  $A ::= \gamma_1 ... \gamma_n \bullet$  in *I*, add *reduce* transition

$$\epsilon, IJ_1...J_{n-1}K \rightarrow K'K$$
, where  $K' = \text{goto}(K, A)$ 

• For each item of the form  $A ::= \gamma \bullet a\beta$  in I with  $a \in \Sigma$ , add a *shift* transition

$$a, I \rightarrow I'I$$
 where  $I' = \text{goto}(I, a)$ 

Resulting automaton is deterministic  $\iff$  grammar is LR(O)

#### Conflicts

- Recall: Automaton is deterministic  $\iff$  grammar is LR(O)
- Two different types of transitions:
  - *Reduce* transitions, from items of the form  $A ::= \gamma \bullet$
  - Shift transitions, from items of the form  $A ::= \gamma \bullet a\beta$ , where a is a terminal
  - (No transitions generated by items of the formu  $A ::= \gamma \bullet A\beta$  where A is a non-terminal)

#### Conflicts

- Recall: Automaton is deterministic  $\iff$  grammar is LR(O)
- Two different types of transitions:
  - *Reduce* transitions, from items of the form  $A ::= \gamma \bullet$
  - Shift transitions, from items of the form  $A ::= \gamma \bullet a\beta$ , where a is a terminal
  - (No transitions generated by items of the formu  $A ::= \gamma \bullet A\beta$  where A is a non-terminal)
- Reduce/reduce conflict: state has two or more items of the form A ::= γ (choice of reduction is non-deterministic!)

#### Conflicts

- Recall: Automaton is deterministic  $\iff$  grammar is LR(O)
- Two different types of transitions:
  - *Reduce* transitions, from items of the form  $A ::= \gamma \bullet$
  - Shift transitions, from items of the form  $A ::= \gamma \bullet a\beta$ , where a is a terminal
  - (No transitions generated by items of the formu  $A ::= \gamma \bullet A\beta$  where A is a non-terminal)
- Reduce/reduce conflict: state has two or more items of the form A ::= γ• (choice of reduction is non-deterministic!)
- Shift/reduce conflict: state has an item of the form  $A ::= \gamma \bullet and$  one of the form  $A ::= \gamma \bullet a\beta$  (choice of whether to shift or reduce is non-deterministic!)

## Simple LR (SLR)

- Simple LR is a straight-forward extension of LR(O) with a lookahead token
- Idea: proceed exactly as LR(O), but eliminate (some) conflicts using lookahead token
  - For each item of the form  $A ::= \gamma_1 ... \gamma_n \bullet$  in *I*, add *reduce* transition

 $\epsilon, IJ_1...J_{n-1}K \rightarrow K'K$ , where  $K' = \operatorname{goto}(K, A)$ 

with any lookahead token in follow(A)

## Simple LR (SLR)

- Simple LR is a straight-forward extension of LR(O) with a lookahead token
- Idea: proceed exactly as LR(O), but eliminate (some) conflicts using lookahead token
  - For each item of the form  $A ::= \gamma_1 ... \gamma_n \bullet$  in *I*, add *reduce* transition

 $\epsilon, IJ_1...J_{n-1}K \rightarrow K'K$ , where  $K' = \operatorname{goto}(K, A)$ 

#### with any lookahead token in follow(A)

• Example: the following grammar is SLR, but not LR(O)

Consider: closure( $\{<S'> ::= \bullet <S>\$\}$ ) contains  $<T> ::= \bullet$  and  $<T> ::= \bullet a <T>$ .

SLR parser generators: Jison

#### LR(1) parser construction

- LR(1) parser generators: Menhir, Bison
- An LR(1) item of a grammar  $G = (N, \Sigma, R, S)$  is of the form  $(A ::= \gamma_1 ... \gamma_i \bullet \gamma_{i+1} ... \gamma_n, a)$ , where  $A ::= \gamma_1 ... \gamma_n$  is a rule of G and  $a \in \Sigma$ 
  - $\gamma_1 ... \gamma_i$  derives part of the word that has already been read
  - $\gamma_{i+1}...\gamma_n$  derives part of the word that remains to be read
  - *a* is a lookahead symbol
- For any set of items *I*, define closure(*I*) to be the least set of items such that
  - closure(I) contains I
  - If closure(I) contains an item of the form  $(A ::= \alpha \bullet B\beta, a)$  where B is a non-terminal, then closure(I) contains  $(B ::= \bullet \gamma, b)$  for all  $B ::= \gamma \in R$  and all  $b \in \text{first}(\beta a)$ .
- Construct PDA as in LR(O)



- LR(1) transition tables can be very large
- LALR(1) ("lookahead LR(1)") make transition table smaller by merging states (that is, closed itemsets) that are identical except for lookahead
- Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this merging *doesn't* create conflicts.
- LALR(1) parser generators: Bison, Yacc, ocamlyacc, Jison

## Summary of parsing

- For any k, LL(k) grammars are LR(k)
- SLR grammars are LALR(1) are LR(1)
- In terms of *language expressivity*, there is an SLR (and therefore LALR(1) and LR(1) grammar for any context-free language that can be accepted by a deterministic pushdown automaton).
- Not every deterministic context free language is LL(k):  $\{a^n b^n : n \in \mathbb{N}\} \cup \{a^n c^n : n \in \mathbb{N}\}$  is DCFL but not LL(k) for any k.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>John C. Beatty, *Two iteration theorems for the LL(k) Languages*