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• HW3 on course webpage later today. Due March 25. Start early!
• You will implement a compiler for a simple imperative programming language (Oat), targeting

LLVMlite.
• You may work individually or in pairs

• Midterm next Thursday
• Covers material in lectures up to February 29th (this Thursday)

• Interpreters, program transformation, X86, IRs, lexing, parsing
• How to prepare:

• Sample exams on Canvas later today
• Start on HW3
• Review slides
• Review example code from lectures (try re-implementing!)

• Review next Tuesday: come prepared with questions



Parsing II: LL parsing



Recall: Context-free grammars

• A context-free grammar G = (N,Σ,R,S) consists of:
• N: a finite set of non-terminal symbols
• Σ: a finite alphabet (or set of terminal symbols)
• R ⊆ N × (N ∪ Σ)∗ a finite set of rules or productions
• S ∈ N: the starting non-terminal.

• A word w is accepted by G if is derivable in zero or more steps from the starting
non-terminal

• Write γ ⇒ γ′ if γ′ is obtained from γ by replacing a non-terminal symbol in γ with the
right-hand-side of one of its rules

• Write γ ⇒∗ γ′ if γ′ can be obtained from γ using 0 or more derivation steps
• A word w ∈ Σ∗ is accepted by G if S ⇒∗ w
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Parsing

• Context-free grammars are generative: easy to find strings that belongs to L(G), not so
easy determine whether a given string belongs to L(G)

• Pushdown automata (PDA) are a kind of automata that recognize context-free languages

• Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | ϵ:
• Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

q0start q1 qf
ϵ, ϵ → $ ϵ, $ → ϵ

(, ϵ → L

),L → ϵ



Recall: pushdown automata

• A push-down automaton A = (Q,Σ,Γ,∆, s,F) consists of
• Q: a finite set of states
• Σ: an (input) alphabet
• Γ: a (stack) alphabet
• ∆ ⊆ Q︸︷︷︸

source

× (Σ ∪ {ϵ})︸ ︷︷ ︸
read input

× Γ∗︸︷︷︸
read stack

× Q︸︷︷︸
dest

× Γ∗︸︷︷︸
write stack

, the transition relation

• s ∈ Q: start state
• F ⊆ Q: set of final (accepting) states

• A word w is accepted by A if there is a w-labeled accepting path in A
• A configuration of A is a pair (q, v) consisting of a state q ∈ Q and a stack v ∈ Γ∗

• Write (q, v) w−→ (q′, v′) if there is some t ∈ Γ∗ such that v = at, v′ = bt, and (q,w, a, q′, b) ∈ ∆

• Write (q, v) w−→
∗
(q′, v′) if there is some w1, . . . ,wn and (q1, v1), . . . , (qn−1, vn−1) such that

w = w1· · ·wn and

(q, v) w1−−→ (q1, v1)
w2−−→ (q2, v2)

w3−−→ . . .
wn−1−−−→ (qn−1, vn−1)

wn−−→ (q′, v′)

• A word w is accepted iff (s, ϵ) w−→
∗
(q, v) for some q ∈ F, v ∈ Γ∗.
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Context free languages

• Claim: a language is recognized by a context-free grammar if and only if it is recognized
by a pushdown automaton

• Say that a language is context free if it is recognized by a context-free grammar (equiv.
pushdown automaton).

• Consequence: can “compile” context-free grammars to pushdown automata in order to
implement parsers

• Two strategies, which correspond to different ways to implement parsers:
• Top-down (LL parsing)
• Bottom-up (LR parsing)
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Top-down parsing

• Stack represents intermediate state of a derivation, minus the consumed part of the input string.
• Start with S on the stack
• Any time top of the stack is a non-terminal A, non-deterministically choose a rule A ::= γ ∈ R.

Pop A off the stack, and push γ

• If the top of the stack is a terminal a, consume a from the input string and pop a off the stack
• Accept when stack is empty

<S> ::= <B>+<S> | <B>
<B> ::= (<S>) | x

q0start q1 qf
ϵ, ϵ → <S>$ ϵ, $ → ϵ

(, ( → ϵ
), ) → ϵ
+, + → ϵ
x, x → ϵ

ϵ, <S> → <B>+<S>
ϵ, <S> → <B>
ϵ, <B> → (<S>)

ϵ, <B> → x



<S> ::= <B>+<S> | <B>
<B> ::= (<S>) | x

q0start q1 qf
ϵ, ϵ → <S>$ ϵ, $ → ϵ

(, ( → ϵ
), ) → ϵ
+, + → ϵ
x, x → ϵ

ϵ, <S> → <B>+<S>
ϵ, <S> → <B>
ϵ, <B> → (<S>)

ϵ, <B> → x

State Stack Input
q0 ϵ (x+x)+x
q1 <S>$ (x+x)+x
q1 <B>+<S>$ (x+x)+x
q1 (<S>)+<S>$ (x+x)+x
q1 <S>)+<S>$ x+x)+x
q1 <B>+<S>)+<S>$ x+x)+x
q1 x+<S>)+<S>$ x+x)+x
q1 +<S>)+<S>$ +x)+x
q1 <S>)+<S>$ x)+x
q1 <B>)+<S>$ x)+x
q1 x)+<S>$ x)+x
q1 )+<S>$ )+x
q1 +<S>$ +x
q1 <S>$ x
q1 <B>$ x
q1 x$ x
q1 $ ϵ
qf ϵ ϵ



Bottom-up parsing

• Stack holds a word in (N ∪ Σ)∗ such that it is possible to derive the part of the input string that has
been consumed from its reverse.

• At any time, may read a letter from input string and push it on top of the stack
• At any time, may non-deterministically choose a rule A ::= γ1 . . . γn and apply it in reverse: pop

γn . . . γ1 off the top of the stack, and push A.
• Accept when stack just contains start non-terminal

<S> ::= <B>+<S> | <B>
<B> ::= (<S>) | x

q0start q1 qf
ϵ, ϵ → $ ϵ, <S>$ → ϵ

(, ϵ → (
), ϵ → )
+, ϵ → +
x, ϵ → x

ϵ, <S>+<B> → <S>
ϵ, <B> → <S>
ϵ, )<S>( → <B>
ϵ, x → <B>



<S> ::= <B>+<S> | <B>
<B> ::= (<S>) | x

q0start q1 qf
ϵ, ϵ → $ ϵ, <S>$ → ϵ

(, ϵ → (
), ϵ → )
+, ϵ → +
x, ϵ → x

ϵ, <S>+<B> → <S>
ϵ, <B> → <S>
ϵ, )<S>( → <B>

ϵ, x → <B>

State Stack Input
q0 ϵ (x+x)+x
q1 $ (x+x)+x
q1 ($ x+x)+x
q1 x($ +x)+x
q1 <B>($ +x)+x
q1 +<B>($ x)+x
q1 x+<B>($ )+x
q1 <B>+<B>($ )+x
q1 <S>+<B>($ )+x
q1 <S>($ )+x
q1 )<S>($ +x
q1 <B>$ +x
q1 +<B>$ x
q1 x+<B>$ ϵ
q1 <B>+<B>$ ϵ
q1 <S>+<B>$ ϵ
q1 <S>$ ϵ
qf ϵ ϵ



Parsing overview

• Basic problem with both top-down and bottom-up construction: non-determinism
• Non-deterministic search is inefficient

• E.g., consider <S> ::= <S>a | <S>b | ϵ. Top-down parser must “guess” the entire input string at
the beginning (breadth-first backtracking search takes exponential time in length of input string,
depth-first does not terminate).

• Algorithms for parsing any context free grammar in cubic1 time, based on dynamic
programming (Earley, and Cocke-Younger-Kasami).

• Parser generators use these same ideas, but restricted to cases where we can eliminate
non-determinism.

• Possible for both top-down and bottom-up style
• Today: LL (Left-to-right, Leftmost derivation) parsers: top-down

• Easy to understand & write by hand
• Next time: LR (Left-to-right, Rightmost derivation) parsers: bottom-up

• More general, (variations) implemented in parser generators

1Also sub-cubic galactic algorithms: Valiant 1975
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LL parsing

<S> ::= <B>+<S> | <B>
<B> ::= (<S>) | x

q0start q1 qf
ϵ, ϵ → <S>$ ϵ, $ → ϵ

(, ( → ϵ
), ) → ϵ
+, + → ϵ
x, x → ϵ

ϵ, <S> → <B>+<S>
ϵ, <S> → <B>
ϵ, <B> → (<S>)

ϵ, <B> → x

• “Any time top of the stack is a non-terminal A, non-deterministically choose a production
A ::= γ ∈ R. Pop A off the stack, and push γ”

• Key problem: need to deterministically choose which production to use
• Solution: Look at the next input symbol, but don’t consume it (lookahead)

• This is LL(1) parsing. LL(k) allows k lookahead tokens



• We say that a grammar is LL(k) if when we look ahead k symbols in a top-down parser,
we know which rule we should apply.

• Let G = (N,Σ,R,S) be a grammar. G is LL(k) iff: for any S ⇒∗ αAβ, for any word w ∈ Σk, if
there is some A ::= γ ∈ R such that γβ ⇒∗ wβ′ (for some β′), then γ is unique.

• Not every context-free language has an LL(k) grammar.
• {aibj : i = j ∨ 2i = j} is not LL(k) for any k

• Which of the following are LL(1) grammars?
• <S> ::= a<S> | b<S> | ϵ

More generally, any grammar that results from our DFA→CFG conversion

• <S> ::= <S>a | <S>b | ϵ
• <S> ::= <B>+<S> | <B>

<B> ::= (<S>) | x



• We say that a grammar is LL(k) if when we look ahead k symbols in a top-down parser,
we know which rule we should apply.

• Let G = (N,Σ,R,S) be a grammar. G is LL(k) iff: for any S ⇒∗ αAβ, for any word w ∈ Σk, if
there is some A ::= γ ∈ R such that γβ ⇒∗ wβ′ (for some β′), then γ is unique.

• Not every context-free language has an LL(k) grammar.
• {aibj : i = j ∨ 2i = j} is not LL(k) for any k

• Which of the following are LL(1) grammars?
• <S> ::= a<S> | b<S> | ϵ

More generally, any grammar that results from our DFA→CFG conversion

• <S> ::= <S>a | <S>b | ϵ
• <S> ::= <B>+<S> | <B>

<B> ::= (<S>) | x



• We say that a grammar is LL(k) if when we look ahead k symbols in a top-down parser,
we know which rule we should apply.

• Let G = (N,Σ,R,S) be a grammar. G is LL(k) iff: for any S ⇒∗ αAβ, for any word w ∈ Σk, if
there is some A ::= γ ∈ R such that γβ ⇒∗ wβ′ (for some β′), then γ is unique.

• Not every context-free language has an LL(k) grammar.
• {aibj : i = j ∨ 2i = j} is not LL(k) for any k

• Which of the following are LL(1) grammars?
• <S> ::= a<S> | b<S> | ϵ

More generally, any grammar that results from our DFA→CFG conversion
• <S> ::= <S>a | <S>b | ϵ
• <S> ::= <B>+<S> | <B>

<B> ::= (<S>) | x



Left-factoring

• The grammar

<S> ::= <B>+<S> | <B>
<B> ::= (<S>) | x

is not LL(1): ( lookahead can’t distinguish the two <S> rules
• However, there is an LL(1) grammar for the language

<S> ::= <B><R>

<R> ::= +<S> | ϵ
<B> ::= (<S>) | x

• General strategy: factor out rules with common prefixes (“left factoring”)
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Eliminating left recursion

• A grammar is left-recursive if there is a non-terminal A such that A ⇒+ Aγ (for some γ)
• Left-recursive grammars are not LL(k) for any k
• Consider:

<S> ::= <S>+<B> | <B>
<B> ::= (<S>) | x

Can remove left recursion as follows:

<S> ::= <B><S’>

<S’> ::= +<B><S’> | ϵ
<B> ::= (<S>) | x

(Recognizes the same language, but parse trees are different!)
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Mechanical construction of LL(1) parsers
• Fix a grammar G = (N,Σ,R,S)
• For any word γ ∈ (N ∪ Σ)∗, define first(γ) = {a ∈ Σ : γ ⇒∗ aw}
• For any word γ ∈ (N ∪ Σ)∗, say that γ is nullable if γ ⇒∗ ϵ

• For any non-terminal A, define follow(A) = {a ∈ Σ : ∃γ, γ′.S⇒ γAaγ′}

• Transition table δ for G can be computed using first, follow, and nullable:
1 For each non-terminal A and letter a, initialize δ(A, a) to ∅
2 For each rule A ::= γ

• Add γ to δ(A, a) for each a ∈ first(γ)
• If γ is nullable, add γ to δ(A, a) for each a ∈ follow(A)

• G is LL(1) iff δ(A, a) is empty or singleton for all A and a
• Operation of the parser on a word w:

• Start with stack <S>
• While w not empty

• If top of the stack is a terminal a and w = aw′, pop and set w = w′

• If top of the stack is a non-terminal A and w = aw′, pop and push (singleton) δ(A, a)
(or reject if δ(A, a) is empty)

• Accept if stack is empty; reject otherwise.
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Computing nullable
• nullable is the smallest set of non-terminals such that if there is some A ::= γ1 . . . γn ∈ R

with γ1, . . . , γn ∈ nullable implies A ∈ nullable
• Fixpoint computation:

• nullable0 = ∅
• nullablei+1 = {A : ∃γ1, . . . , γn ∈ nullablei.A ::= γ1 . . . γn ∈ R}

• nullable =
∞∪

i=0

nullablei

nullable← ∅;
changed← true;
while changed do

changed← false;
for A := γ1 . . . γn ∈ R do

if A /∈ nullable ∧ γ1, . . . , γn ∈ nullable then
nullable← nullable ∪ {A};
changed← true;

• Fixpoint computations appear everywhere!
• Later we will see how they are used in dataflow analysis
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Computing first and follow

• first is the smallest function2 such that
• For each a ∈ Σ, first(a) = {a}
• For each A ::= γ1 . . . γi . . . γn ∈ R, with γ1, . . . , γi−1 nullable, first(A) ⊇ first(γi)

• follow is the smallest function such that
• For each A ::= γ1 . . . γi . . . γn ∈ R, with γi+1, . . . , γn nullable, follow(γi) ⊇ follow(A)
• For each A ::= γ1 . . . γi . . . γj . . . γn ∈ R, with γi+1, . . . , γj−1 nullable, follow(γi) ⊇ first(γj)

• Both can be computed using a fixpoint algorithm, like nullable

2Pointwise order: f ≤ g if for all x, f(x) ≤ g(x)


