COS320: Compiling Techniques

Zak Kincaid

February 28, 2024

- HW3 on course webpage later today. Due March 25. Start early!
 - You will implement a compiler for a simple imperative programming language (Oat), targeting LLVMlite.
 - You may work individually or in pairs
- Midterm next Thursday
 - Covers material in lectures up to February 29th (this Thursday)
 - Interpreters, program transformation, X86, IRs, lexing, parsing
 - How to prepare:
 - Sample exams on Canvas later today
 - Start on HW3
 - Review slides
 - Review example code from lectures (try re-implementing!)
 - Review next Tuesday: come prepared with questions

Parsing II: LL parsing

Recall: Context-free grammars

- A context-free grammar $G = (N, \Sigma, R, S)$ consists of:
 - N: a finite set of non-terminal symbols
 - Σ : a finite alphabet (or set of *terminal symbols*)
 - $R \subseteq N \times (N \cup \Sigma)^*$ a finite set of *rules* or *productions*
 - $S \in N$: the starting non-terminal.

Recall: Context-free grammars

- A context-free grammar $G = (N, \Sigma, R, S)$ consists of:
 - N: a finite set of non-terminal symbols
 - Σ : a finite alphabet (or set of *terminal symbols*)
 - $R \subseteq N \times (N \cup \Sigma)^*$ a finite set of *rules* or *productions*
 - $S \in N$: the starting non-terminal.
- A word w is accepted by G if is derivable in zero or more steps from the starting non-terminal
 - Write $\gamma \Rightarrow \gamma'$ if γ' is obtained from γ by replacing a non-terminal symbol in γ with the right-hand-side of one of its rules
 - Write $\gamma \Rightarrow^* \gamma'$ if γ' can be obtained from γ using 0 or more derivation steps
 - A word $w \in \Sigma^*$ is accepted by G if $S \Rightarrow^* w$

Parsing

- Context-free grammars are generative: easy to find strings that belongs to $\mathcal{L}(G)$, not so easy determine whether a given string belongs to $\mathcal{L}(G)$
- Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | ϵ :
 - Stack alphabet: \$ marks bottom of the stack, L marks unbalanced left paren

Recall: pushdown automata

- A push-down automaton $A = (Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
 - *Q*: a finite set of states
 - Σ : an (input) alphabet
 - Γ : a (stack) alphabet

- $s \in Q$: start state
- $F \subseteq Q$: set of final (accepting) states

Recall: pushdown automata

- A push-down automaton $A = (Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
 - *Q*: a finite set of states
 - Σ : an (input) alphabet
 - Γ: a (stack) alphabet

- $s \in Q$: start state
- $F \subseteq Q$: set of final (accepting) states
- A word w is accepted by A if there is a w-labeled accepting path in A
 - A configuration of A is a pair (q, v) consisting of a state $q \in Q$ and a stack $v \in \Gamma^*$
 - Write $(q, v) \xrightarrow{w} (q', v')$ if there is some $t \in \Gamma^*$ such that v = at, v' = bt, and $(q, w, a, q', b) \in \Delta$
 - Write $(q, v) \xrightarrow{w^*} (q', v')$ if there is some w_1, \ldots, w_n and $(q_1, v_1), \ldots, (q_{n-1}, v_{n-1})$ such that $w = w_1 \cdots w_n$ and

$$(q, v) \xrightarrow{w_1} (q_1, v_1) \xrightarrow{w_2} (q_2, v_2) \xrightarrow{w_3} \dots \xrightarrow{w_{n-1}} (q_{n-1}, v_{n-1}) \xrightarrow{w_n} (q', v')$$

• A word w is accepted iff $(s, \epsilon) \xrightarrow{w^*} (q, v)$ for some $q \in F$, $v \in \Gamma^*$.

Context free languages

- Claim: a language is recognized by a context-free grammar if and only if it is recognized by a pushdown automaton
 - Say that a language is *context free* if it is recognized by a context-free grammar (equiv. pushdown automaton).
- Consequence: can "compile" context-free grammars to pushdown automata in order to implement parsers

Context free languages

- Claim: a language is recognized by a context-free grammar if and only if it is recognized by a pushdown automaton
 - Say that a language is *context free* if it is recognized by a context-free grammar (equiv. pushdown automaton).
- Consequence: can "compile" context-free grammars to pushdown automata in order to implement parsers
- Two strategies, which correspond to different ways to implement parsers:
 - Top-down (LL parsing)
 - Bottom-up (LR parsing)

Top-down parsing

- Stack represents intermediate state of a derivation, minus the consumed part of the input string.
- Start with *S* on the stack
- Any time top of the stack is a non-terminal A, non-deterministically choose a rule $A ::= \gamma \in R$. Pop A off the stack, and push γ
- If the top of the stack is a terminal *a*, consume *a* from the input string and pop *a* off the stack
- Accept when stack is empty $(, (\rightarrow \epsilon),) \rightarrow \epsilon$ $(, + + \rightarrow \epsilon)$ $(, + \rightarrow \epsilon)$ (

State	Stack	Input
q_0	ϵ	(x+x)+x
q_1	<s>\$</s>	(x+x)+x
q_1	+<s>\$</s>	(x+x)+x
q_1	(<s>)+<s>\$</s></s>	(x+x)+x
q_1	<s>)+<s>\$</s></s>	x+x)+x
q_1	+<s>)+<s>\$</s></s>	x+x)+x
q_1	x+ <s>)+<s>\$</s></s>	x+x)+x
q_1	+ <s>)+<s>\$</s></s>	+x)+x
q_1	<s>)+<s>\$</s></s>	x)+x
q_1)+<s>\$</s>	x)+x
q_1	x)+ <s>\$</s>	x)+x
q_1)+ <s>\$</s>)+x
q_1	+ <s>\$</s>	+x
q_1	<s>\$</s>	x
q_1	\$	x
q_1	x\$	x
q_1	\$	ϵ
q_f	ϵ	ϵ

$$~~::= + ~~|~~~~$$

$$::= (~~) | x~~$$

$$(, (\rightarrow \epsilon) \\),) \rightarrow \epsilon \\ +, + \rightarrow \epsilon \\ x, x \rightarrow \epsilon$$
start
$$(q_0) \xrightarrow{\epsilon, \epsilon \rightarrow ~~\$} (q_1) \xrightarrow{\epsilon, \$ \rightarrow \epsilon} (q_f)~~$$

$$(\epsilon, ~~\rightarrow + ~~\\ \epsilon, ~~\rightarrow \\ \epsilon, ~~\rightarrow \\ \epsilon, \rightarrow (~~) \\ \epsilon, \rightarrow x~~~~~~~~~~$$

Bottom-up parsing

- Stack holds a word in (N ∪ Σ)* such that it is possible to derive the part of the input string that has been consumed from its reverse.
- At any time, may read a letter from input string and push it on top of the stack
- At any time, may non-deterministically choose a rule $A ::= \gamma_1 \dots \gamma_n$ and apply it in reverse: pop $\gamma_n \dots \gamma_1$ off the top of the stack, and push A.
- Accept when stack just contains start non-terminal

State	Stack	Input
q_0	ϵ	(x+x)+x
q_1	\$	(x+x)+x
q_1	(\$	x+x)+x
q_1	×(\$	+x)+x
q_1	(\$	+x)+x
q_1	+ (\$	x)+x
q_1	x+ (\$)+x
q_1	+(\$)+x
q_1	<s>+(\$</s>)+x
q_1	<s>(\$</s>)+x
q_1) <s>(\$</s>	+x
q_1	\$	+x
q_1	+ \$	x
q_1	x+ \$	ϵ
q_1	+\$	ϵ
q_1	<s>+\$</s>	ϵ
q_1	<s>\$</s>	ϵ
q_f	ϵ	ϵ

Parsing overview

- Basic problem with both top-down and bottom-up construction: *non-determinism*
 - Non-deterministic search is inefficient
 - E.g., consider <S> ::= <S>a | <S>b | ϵ . Top-down parser must "guess" the entire input string at the beginning (breadth-first backtracking search takes exponential time in length of input string, depth-first does not terminate).
 - Algorithms for parsing any context free grammar in cubic¹ time, based on dynamic programming (Earley, and Cocke-Younger-Kasami).

¹Also sub-cubic galactic algorithms: Valiant 1975

Parsing overview

- Basic problem with both top-down and bottom-up construction: *non-determinism*
 - Non-deterministic search is inefficient
 - E.g., consider <S> ::= <S>a | <S>b | ε. Top-down parser must "guess" the entire input string at the beginning (breadth-first backtracking search takes exponential time in length of input string, depth-first does not terminate).
 - Algorithms for parsing any context free grammar in cubic¹ time, based on dynamic programming (Earley, and Cocke-Younger-Kasami).
- Parser generators use these same ideas, but restricted to cases where we can eliminate non-determinism.
- Possible for both top-down and bottom-up style
 - Today: LL (Left-to-right, Leftmost derivation) parsers: top-down
 - Easy to understand & write by hand
 - Next time: LR (Left-to-right, Rightmost derivation) parsers: bottom-up
 - More general, (variations) implemented in parser generators

¹Also sub-cubic galactic algorithms: Valiant 1975

LL parsing

- "Any time top of the stack is a non-terminal A, non-deterministically choose a production $A ::= \gamma \in R$. Pop A off the stack, and push γ "
 - Key problem: need to deterministically choose which production to use
 - Solution: Look at the next input symbol, but don't consume it (lookahead)
 - This is LL(1) parsing. LL(k) allows k lookahead tokens

- We say that a grammar is *LL*(*k*) if when we look ahead *k* symbols in a top-down parser, we know which rule we should apply.
 - Let $G = (N, \Sigma, R, S)$ be a grammar. G is LL(k) iff: for any $S \Rightarrow^* \alpha A\beta$, for any word $w \in \Sigma^k$, if there is some $A ::= \gamma \in R$ such that $\gamma\beta \Rightarrow^* w\beta'$ (for some β'), then γ is unique.
- Not every context-free language has an *LL(k)* grammar.

•
$$\{a^ib^j: i = j \lor 2i = j\}$$
 is not $LL(k)$ for any k

- We say that a grammar is *LL(k)* if when we look ahead *k* symbols in a top-down parser, we know which rule we should apply.
 - Let $G = (N, \Sigma, R, S)$ be a grammar. G is LL(k) iff: for any $S \Rightarrow^* \alpha A\beta$, for any word $w \in \Sigma^k$, if there is some $A ::= \gamma \in R$ such that $\gamma \beta \Rightarrow^* w\beta'$ (for some β'), then γ is unique.
- Not every context-free language has an *LL(k)* grammar.

•
$$\{a^ib^j: i = j \lor 2i = j\}$$
 is not $LL(k)$ for any k

- Which of the following are *LL*(1) grammars?
 - <S> ::= a<S> | b<S> | ϵ

- We say that a grammar is *LL(k)* if when we look ahead *k* symbols in a top-down parser, we know which rule we should apply.
 - Let $G = (N, \Sigma, R, S)$ be a grammar. G is LL(k) iff: for any $S \Rightarrow^* \alpha A\beta$, for any word $w \in \Sigma^k$, if there is some $A ::= \gamma \in R$ such that $\gamma\beta \Rightarrow^* w\beta'$ (for some β'), then γ is unique.
- Not every context-free language has an LL(k) grammar.
 - $\{a^ib^j: i = j \lor 2i = j\}$ is not LL(k) for any k
- Which of the following are LL(1) grammars?
 - <S> ::= a<S> | b<S> | ϵ

More generally, any grammar that results from our DFA \rightarrow CFG conversion

- <S> ::= <S>a | <S>b | ϵ
- <S> ::= +<S> |

 ::= (<S>) | x

Left-factoring

• The grammar

is not LL(1): (lookahead can't distinguish the two <S> rules

• However, there is an LL(1) grammar for the language

Left-factoring

• The grammar

is not LL(1): (lookahead can't distinguish the two <S> rules

• However, there is an LL(1) grammar for the language

$$~~::=~~$$

 $::= + ~~| \epsilon~~$
 $::= (~~) | x~~$

• General strategy: factor out rules with common prefixes ("left factoring")

Eliminating left recursion

- A grammar is left-recursive if there is a non-terminal A such that $A \Rightarrow^+ A\gamma$ (for some γ)
- Left-recursive grammars are not LL(k) for any k
- Consider:

<S> ::= <S>+ | ::= (<S>) | x

Eliminating left recursion

- A grammar is left-recursive if there is a non-terminal A such that $A \Rightarrow^+ A\gamma$ (for some γ)
- Left-recursive grammars are not LL(k) for any k
- Consider:

<S> ::= <S>+ | ::= (<S>) | x

Can remove left recursion as follows:

$$~~::=~~$$

 $::= + | \epsilon$
 $::= (~~) | x~~$

(Recognizes the same language, but parse trees are different!)

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define first $(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define first $(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$
- Transition table δ for G can be computed using first, follow, and nullable:
 - **1** For each non-terminal A and letter a, initialize $\delta(A, a)$ to \emptyset
 - **2** For each rule $A ::= \gamma$
 - Add γ to $\delta(A, a)$ for each $a \in \text{first}(\gamma)$
 - If γ is nullable, add γ to $\delta(A, a)$ for each $a \in \mathbf{follow}(A)$

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define first $(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$
- Transition table δ for G can be computed using first, follow, and nullable:
 - **①** For each non-terminal A and letter a, initialize $\delta(A, a)$ to \emptyset
 - **2** For each rule $A ::= \gamma$
 - Add γ to $\delta(A, a)$ for each $a \in first(\gamma)$
 - If γ is nullable, add γ to $\delta(A, a)$ for each $a \in \mathbf{follow}(A)$
- G is LL(1) iff $\delta(A, a)$ is empty or singleton for all A and a

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define $first(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'.S \Rightarrow \gamma A a \gamma'\}$
- Transition table δ for G can be computed using first, follow, and nullable:
 - **1** For each non-terminal A and letter a, initialize $\delta(A, a)$ to \emptyset
 - **2** For each rule $A ::= \gamma$
 - Add γ to $\delta(A, a)$ for each $a \in \text{first}(\gamma)$
 - If γ is nullable, add γ to $\delta(A, a)$ for each $a \in \mathbf{follow}(A)$
- G is LL(1) iff $\delta(A, a)$ is empty or singleton for all A and a
- Operation of the parser on a word *w*.
 - Start with stack <S>
 - While *w* not empty
 - If top of the stack is a terminal a and w = aw', pop and set w = w'
 - If top of the stack is a non-terminal A and w = aw', pop and push (singleton) $\delta(A, a)$ (or reject if $\delta(A, a)$ is empty)
 - Accept if stack is empty; reject otherwise.

Computing nullable

- nullable is the *smallest set* of non-terminals such that if there is some $A ::= \gamma_1 \dots \gamma_n \in R$ with $\gamma_1, \dots, \gamma_n \in$ nullable implies $A \in$ nullable
 - Fixpoint computation:
 - nullable₀ = \emptyset • $\mathsf{nullable}_{i+1} = \{A : \exists \gamma_1, \dots, \gamma_n \in \mathsf{nullable}_i A ::= \gamma_1 \dots \gamma_n \in R\}$ • nullable = [] nullable_i i = 0nullable $\leftarrow \emptyset$: changed \leftarrow true: while changed do changed \leftarrow false: for $A := \gamma_1 \dots \gamma_n \in R$ do

Computing nullable

- nullable is the *smallest set* of non-terminals such that if there is some $A ::= \gamma_1 \dots \gamma_n \in R$ with $\gamma_1, \dots, \gamma_n \in$ nullable implies $A \in$ nullable
 - Fixpoint computation:
 - nullable₀ = \emptyset • $\operatorname{nullable}_{i+1} = \{A : \exists \gamma_1, \dots, \gamma_n \in \operatorname{nullable}_i A ::= \gamma_1 \dots \gamma_n \in R\}$ • nullable = [] nullable_i nullable $\leftarrow \emptyset$: changed \leftarrow true: while changed do changed \leftarrow false: for $A := \gamma_1 \dots \gamma_n \in R$ do
- Fixpoint computations appear everywhere!
 - Later we will see how they are used in dataflow analysis

Computing first and follow

- first is the *smallest function*² such that
 - For each $a \in \Sigma$, first $(a) = \{a\}$
 - For each $A ::= \gamma_1 \dots \gamma_i \dots \gamma_n \in R$, with $\gamma_1, \dots, \gamma_{i-1}$ nullable, first $(A) \supseteq$ first (γ_i)
- follow is the smallest function such that
 - For each $A ::= \gamma_1 \dots \gamma_i \dots \gamma_n \in R$, with $\gamma_{i+1}, \dots, \gamma_n$ nullable, follow $(\gamma_i) \supseteq$ follow(A)
 - For each $A ::= \gamma_1 \dots \gamma_i \dots \gamma_j \dots \gamma_n \in R$, with $\gamma_{i+1}, \dots, \gamma_{j-1}$ nullable, follow $(\gamma_i) \supseteq$ first (γ_j)
- Both can be computed using a fixpoint algorithm, like nullable

²Pointwise order: $f \leq g$ if for all $x, f(x) \leq g(x)$