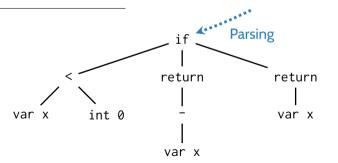

COS320: Compiling Techniques

Zak Kincaid

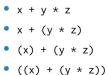
February 22, 2024

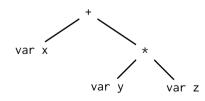
Parsing I: Context-free languages

Compiler phases (simplified)



} else {


return x;


```
IF, LPAREN, IDENT "x", LT, INT 0, RPAREN, LBRACE, RETURN, MINUS, IDENT "x", SEMI, RBRACE, ELSE, LBRACE, RETURN, IDENT "x", SEMI, RBRACE
```


- The *parsing* phase of a compiler takes in a stream of tokens (produced by a lexer), and builds an *abstract syntax tree* (AST).
 - Parser is responsible for reporting syntax errors if the token stream cannot be parsed
 - Variable scoping, type checking, ... handled later (semantic analysis)

- The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and builds an abstract syntax tree (AST).
 - Parser is responsible for reporting syntax errors if the token stream cannot be parsed
 - Variable scoping, type checking, ... handled later (semantic analysis)
- An abstract syntax tree is a tree that represents the syntactic structure of the source code
 - "Abstract" in the sense that it omits details of the concrete syntax
 - semi-colons, parens, braces, whitespace, comments, ...
 - E.g., the following have the same abstract syntax tree:

Implementing a parser

- Option 1: By-hand (recursive descent)
 - Clang, gcc (since 3.4)
 - Libraries can make this easier (e.g., parser combinators parsec)

Implementing a parser

- Option 1: By-hand (recursive descent)
 - Clang, gcc (since 3.4)
 - Libraries can make this easier (e.g., parser combinators parsec)
- Option 2: Use a parser generator
 - Much easier to get right ("specification is the implementation")
 - Parser generator warns of ambiguities, ill-formed grammars, etc.
 - gcc (before 3.4), Glasgow Haskell Compiler, OCaml compiler
 - Parser generators: Yacc, Bison, ANTLR, menhir

Defining syntax

- Recall:
 - An alphabet Σ is a finite set of symbols (e.g., $\{0,1\}$, ASCII, unicode).
 - A *word* (or *string*) over Σ is a sequence of symbols in Σ
 - A language over Σ is a set of words over Σ
- The set of syntactically valid programs in a programming language is a language
 - Conceptually: alphabet is ASCII or Unicode
 - In practice: (often) over token types
 - Lexer gives us a higher-level view of source text that makes it easier to work with
- This language is typically specified by a context-free grammar

Well-formed expressions (character-level):
 3+2*x,
 (x*100) + (y*10) + z, ...

 Well-formed expressions (token-level): INT+INT*VAR, (VAR*INT)+(VAR*INT)+VAR...

Why not regular expressions?

- Programming languages are typically not regular.
- E.g., the language of valid expressions
- See: pumping lemma, Myhill-Nerode theorem COS 487

Context-free grammars

- A context-free grammar $G = (N, \Sigma, R, S)$ consists of:
 - N: a finite set of non-terminal symbols
 - Σ : a finite alphabet (or set of *terminal symbols*), disjoint from N
 - $R \subseteq N \times (N \cup \Sigma)^*$ a finite set of *rules* or *productions*
 - Rules often written $A \rightarrow w$
 - A is a non-terminal (left-hand side)
 - w is a word over N and Σ (right-hand side)
 - $S \in N$: the starting non-terminal.

Context-free grammars

- A context-free grammar $G = (N, \Sigma, R, S)$ consists of:
 - N: a finite set of non-terminal symbols
 - Σ : a finite alphabet (or set of *terminal symbols*), disjoint from N
 - $R \subseteq N \times (N \cup \Sigma)^*$ a finite set of *rules* or *productions*
 - Rules often written $A \to w$
 - A is a non-terminal (left-hand side)
 - w is a word over N and Σ (right-hand side)
 - $S \in \mathbb{N}$: the starting non-terminal.
- Backus-Naur form is specialized syntax for writing context-free grammars
 - Non-terminal symbols are written between <,>s
 - Rules written as <expr> ::= <expr>+<expr>
 - | abbreviates multiple productions w/ same left-hand side

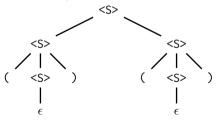
```
  <expr> ::= <expr>+<expr> | <expr>*<expr> means
  <expr> ::= <expr>+<expr>
  <expr> ::= <expr>*<expr>
```

Derivations

- A derivation consists of a finite sequence of words $w_1,...,w_n\in (N\cup\Sigma)^*$ such that $w_1=S$ and for each i, w_{i+1} is obtained from w_i by replacing a non-terminal symbol with the right-hand-side of one of its rules
 - Example:
 - Grammar: $\langle S \rangle$::= $\langle S \rangle \langle S \rangle$ | $\langle \langle S \rangle$ | ϵ
 - Derivations:

- Formally:
 - For each i, there is some $u, v \in (N \cup \Sigma)^*$ some $A \in N$, and some $x \in (N \cup \Sigma)^*$ such that $w_i = uAv, w_{i+1} = uxv$, and $(A, x) \in R$.
- The set of all strings $w \in \Sigma^*$ such that G has a derivation of w is the *language* of G, written $\mathcal{L}(G)$.

Derivations


- A derivation consists of a finite sequence of words $w_1,...,w_n \in (N \cup \Sigma)^*$ such that $w_1 = S$ and for each i, w_{i+1} is obtained from w_i by replacing a non-terminal symbol with the right-hand-side of one of its rules
 - Example:
 - Grammar: $\langle S \rangle$: := $\langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$
 - Derivations

- Formally:
 - For each i, there is some $u, v \in (N \cup \Sigma)^*$ some $A \in N$, and some $x \in (N \cup \Sigma)^*$ such that $w_i = uAv, w_{i+1} = uxv$, and $(A, x) \in R$.
- The set of all strings $w \in \Sigma^*$ such that G has a derivation of w is the *language* of G, written $\mathcal{L}(G)$.
- A derivation is *leftmost* if we always substitute the leftmost non-terminal, and *rightmost* if we always substitute the rightmost non-terminal.

Parse trees

- A parse tree is a tree representation of a derivation
 - Each leaf node is labelled with a terminal
 - Each internal node is labelled with a non-terminal
 - If an internal node has label X, its children (read left-to-right) are the right-hand-side of a rule $\mathbf{w}/$ left-hand-side X
 - The root is labelled with the start symbol

Parse tree for ()(), with grammar <S> ::= <S><S> \mid (<S>) \mid ϵ

Parse trees

- A parse tree is a tree representation of a derivation
 - Each leaf node is labelled with a terminal
 - Each internal node is labelled with a non-terminal
 - If an internal node has label X, its children (read left-to-right) are the right-hand-side of a rule $\mathbf{w}/$ left-hand-side X
 - The root is labelled with the start symbol
- Construct a parse tree from a derivating by "parallelizing" non-terminals
- Parse tree corresponds to many derivations
 - Exactly one leftmost derivation (and exactly one rightmost derivation).

Ambiguity

- A context-free grammar is ambiguous if there are two different parse trees for the same word.
 - Equivalently: a grammar is ambiguous if some word has two different left-most derivations

```
<expr> ::=<int> | <var> | <expr> +<expr> | <expr> *<expr> | (<expr>)
<var> ::=a | ... | z
 <int>::=0 | ... | 9
       <expr>
                                                      <expr>
```

Eliminating ambiguity

- Ambiguity can often be eliminated by refactoring the grammar
 - Some languages are *inherently ambiguous*: context-free, but every grammar that accepts the language is ambiguous. E.g. $\{a^ib^jc^k: i=j \text{ or } j=k\}$.

Eliminating ambiguity

- Ambiguity can often be eliminated by refactoring the grammar
 - Some languages are inherently ambiguous: context-free, but every grammar that accepts the language is ambiguous. E.g. $\{a^ib^jc^k: i=j \text{ or } j=k\}$.
- Unambiguous expression grammar

```
<expr> ::=<term>+<expr> | <term>
  <term> ::=<term>*<factor> | <factor>
<factor> ::=<var> | <int> | (<expr>)
```

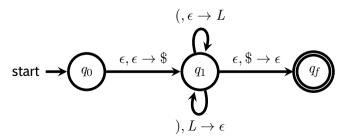
- + associates to the right and and * associates to the left (recursive case right (respectively, left)
 of operator)
- * has higher precedence than + (* is farther from start symbol)

Regular languages are context-free

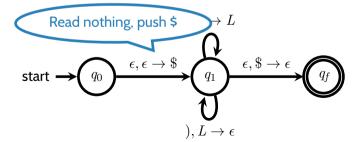
Suppose that L is a regular language. Then there is an NFA $A=(Q,\Sigma,\Delta,s,F)$ such that $\mathcal{L}(A)=L$. How can we construct a context-free grammar that accepts L?

Regular languages are context-free

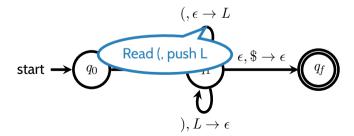
Suppose that L is a regular language. Then there is an NFA $A=(Q,\Sigma,\Delta,s,F)$ such that $\mathcal{L}(A)=L$. How can we construct a context-free grammar that accepts L? $G=(N,\Sigma,R,S)$, where:

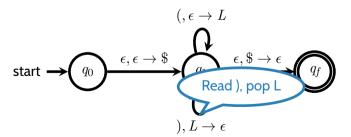

- \bullet N=Q
- S = s
- $R = \{q ::= aq' : (q, a, q') \in \Delta\} \cup \{q ::= \epsilon : q \in F\}$

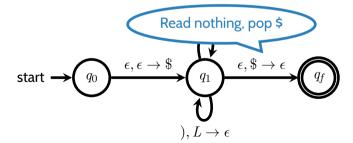
Regular languages are context-free


Suppose that L is a regular language. Then there is an NFA $A=(Q,\Sigma,\Delta,s,F)$ such that $\mathcal{L}(A)=L$. How can we construct a context-free grammar that accepts L? $G=(N,\Sigma,R,S)$, where:

- \bullet N=Q
- \bullet S=s
- $R = \{q ::= aq' : (q, a, q') \in \Delta\} \cup \{q ::= \epsilon : q \in F\}$
- Consequence: could fold lexer definition into grammar definition
- Why not?
 - Separation of concerns
 - Ambiguity is easily understood at lexer level, not parser level
 - Parser generators only handle some context-free grammars
 - Non-determinism is easy at the lexer level (NFA \rightarrow DFA conversion)
 - Non-determinism is hard at the parser level (deterministic CFL \neq non-deterministic CFL)


- Pushdown automata recognize context-free languages
 - PDA:Context-free lanuages :: DFA:Regular languages
 - PDA \sim NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle$: := $\langle S \rangle \langle S \rangle$ | $\langle S \rangle$ | $\langle S \rangle$
 - Stack alphabet: \$ marks bottom of the stack, L marks unbalanced left paren


- Pushdown automata recognize context-free languages
 - PDA:Context-free lanuages :: DFA:Regular languages
 - PDA \sim NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle$::= $\langle S \rangle \langle S \rangle$ | $\langle S \rangle$ | $\langle S \rangle$
 - Stack alphabet: \$ marks bottom of the stack, L marks unbalanced left paren


- Pushdown automata recognize context-free languages
 - PDA:Context-free lanuages :: DFA:Regular languages
 - PDA \sim NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle$: := $\langle S \rangle \langle S \rangle$ | $\langle S \rangle$ | $\langle S \rangle$
 - Stack alphabet: \$ marks bottom of the stack, L marks unbalanced left paren

- Pushdown automata recognize context-free languages
 - PDA:Context-free lanuages :: DFA:Regular languages
 - PDA \sim NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle$: := $\langle S \rangle \langle S \rangle$ | $\langle S \rangle$ | $\langle S \rangle$
 - Stack alphabet: \$ marks bottom of the stack, L marks unbalanced left paren

- Pushdown automata recognize context-free languages
 - PDA:Context-free lanuages :: DFA:Regular languages
 - PDA \sim NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle$::= $\langle S \rangle \langle S \rangle$ | $\langle S \rangle$ | $\langle S \rangle$
 - Stack alphabet: \$ marks bottom of the stack, L marks unbalanced left paren

Pushdown automata, formally

- A push-down automaton $A = (Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
 - *Q*: a finite set of states
 - Σ : an (input) alphabet
 - Γ : a (stack) alphabet
 - $\Delta \subseteq \underbrace{Q}_{\text{source}} \times \underbrace{(\Sigma \cup \{\epsilon\})}_{\text{read input}} \times \underbrace{\Gamma^*}_{\text{read stack}} \times \underbrace{Q}_{\text{dest}} \times \underbrace{\Gamma^*}_{\text{write stack}} \text{, the transition relation}$
 - $s \in Q$: start state
 - $F \subseteq Q$: set of final (accepting) states

Pushdown automata, formally

- A push-down automaton $A = (Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
 - *Q*: a finite set of states
 - Σ : an (input) alphabet
 - Γ : a (stack) alphabet
 - $\Delta \subseteq \underbrace{Q}_{\text{source}} \times \underbrace{(\Sigma \cup \{\epsilon\})}_{\text{read input}} \times \underbrace{\Gamma^*}_{\text{read stack}} \times \underbrace{Q}_{\text{dest}} \times \underbrace{\Gamma^*}_{\text{write stack}} \text{, the transition relation}$
 - $s \in Q$: start state
 - $F \subseteq Q$: set of final (accepting) states
- A pushdown automaton accepts a word w if w can be written as $w_1w_2...w_n$ (each $w_i \in (\Sigma \cup \{\epsilon\})$) s.t. there exists $q_0, q_1, ..., q_n \in Q$ and $v_0, v_1, ..., v_n \in \Gamma^*$ such that
 - $oldsymbol{0} q_0 = s$ and $v_0 = \epsilon$ (i.e., the machine starts at the start state with an empty stactk)
 - 2 for all i, we have $(q_i, w_{i+1}, a, q_{i+1}, b) \in \Delta$, where $v_i = at$ and $v_{i+1} = bt$ for some $a, b, t \in \Gamma^*$
 - 3 $q_m \in F$. (i.e., the machine ends at a final state).