
COS320: Compiling Techniques

Zak Kincaid

February 22, 2024

Parsing I: Context-free languages

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

// compute absolute value
if (x < 0) {

return -x;
} else {

return x;
}

IF, LPAREN, IDENT ”x”, LT, INT 0, RPAREN, LBRACE,
RETURN, MINUS, IDENT ”x”, SEMI,
RBRACE, ELSE, LBRACE,
RETURN, IDENT ”x”, SEMI,
RBRACE

if

< return return

-

var x

var xvar x int 0

Lexing

Parsing

• The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).

• Parser is responsible for reporting syntax errors if the token stream cannot be parsed
• Variable scoping, type checking, ... handled later (semantic analysis)

• An abstract syntax tree is a tree that represents the syntactic structure of the source code
• “Abstract” in the sense that it omits details of the concrete syntax

• semi-colons, parens, braces, whitespace, comments, ...
• E.g., the following have the same abstract syntax tree:

• x + y * z

• x + (y * z)

• (x) + (y * z)

• ((x) + (y * z))

+

var x *

var y var z

• The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).

• Parser is responsible for reporting syntax errors if the token stream cannot be parsed
• Variable scoping, type checking, ... handled later (semantic analysis)

• An abstract syntax tree is a tree that represents the syntactic structure of the source code
• “Abstract” in the sense that it omits details of the concrete syntax

• semi-colons, parens, braces, whitespace, comments, ...
• E.g., the following have the same abstract syntax tree:

• x + y * z

• x + (y * z)

• (x) + (y * z)

• ((x) + (y * z))

+

var x *

var y var z

Implementing a parser

• Option 1: By-hand (recursive descent)
• Clang, gcc (since 3.4)
• Libraries can make this easier (e.g., parser combinators – parsec)

• Option 2: Use a parser generator
• Much easier to get right (“specification is the implementation”)

• Parser generator warns of ambiguities, ill-formed grammars, etc.
• gcc (before 3.4), Glasgow Haskell Compiler, OCaml compiler
• Parser generators: Yacc, Bison, ANTLR, menhir

Implementing a parser

• Option 1: By-hand (recursive descent)
• Clang, gcc (since 3.4)
• Libraries can make this easier (e.g., parser combinators – parsec)

• Option 2: Use a parser generator
• Much easier to get right (“specification is the implementation”)

• Parser generator warns of ambiguities, ill-formed grammars, etc.
• gcc (before 3.4), Glasgow Haskell Compiler, OCaml compiler
• Parser generators: Yacc, Bison, ANTLR, menhir

Defining syntax

• Recall:
• An alphabet Σ is a finite set of symbols (e.g., {0, 1}, ASCII, unicode).
• A word (or string) over Σ is a sequence of symbols in Σ
• A language over Σ is a set of words over Σ

• The set of syntactically valid programs in a programming language is a language
• Conceptually: alphabet is ASCII or Unicode
• In practice: (often) over token types

• Lexer gives us a higher-level view of source text that makes it easier to work with

• This language is typically specified by a context-free grammar

<expr> ::=<int>

| <var>
| <expr>+<expr>
| <expr>*<expr>
| (<expr>)

• Well-formed expressions (character-level):
3+2*x,
(x*100) + (y*10) + z, ...

• Well-formed expressions (token-level):
INT+INT*VAR, (VAR*INT)+(VAR*INT)+VAR...

Why not regular expressions?

• Programming languages are typically not regular.
• E.g., the language of valid expressions
• See: pumping lemma, Myhill-Nerode theorem – COS 487

Context-free grammars

• A context-free grammar G = (N,Σ,R,S) consists of:
• N: a finite set of non-terminal symbols
• Σ: a finite alphabet (or set of terminal symbols), disjoint from N
• R ⊆ N × (N ∪ Σ)∗ a finite set of rules or productions

• Rules often written A → w
• A is a non-terminal (left-hand side)
• w is a word over N and Σ (right-hand side)

• S ∈ N: the starting non-terminal.

• Backus-Naur form is specialized syntax for writing context-free grammars
• Non-terminal symbols are written between <,>s
• Rules written as <expr> ::= <expr>+<expr>
• | abbreviates multiple productions w/ same left-hand side

• <expr> ::= <expr>+<expr> | <expr>*<expr> means
<expr> ::= <expr>+<expr>
<expr> ::= <expr>*<expr>

Context-free grammars

• A context-free grammar G = (N,Σ,R,S) consists of:
• N: a finite set of non-terminal symbols
• Σ: a finite alphabet (or set of terminal symbols), disjoint from N
• R ⊆ N × (N ∪ Σ)∗ a finite set of rules or productions

• Rules often written A → w
• A is a non-terminal (left-hand side)
• w is a word over N and Σ (right-hand side)

• S ∈ N: the starting non-terminal.
• Backus-Naur form is specialized syntax for writing context-free grammars

• Non-terminal symbols are written between <,>s
• Rules written as <expr> ::= <expr>+<expr>
• | abbreviates multiple productions w/ same left-hand side

• <expr> ::= <expr>+<expr> | <expr>*<expr> means
<expr> ::= <expr>+<expr>
<expr> ::= <expr>*<expr>

Derivations

• A derivation consists of a finite sequence of words w1, ...,wn ∈ (N ∪ Σ)∗ such that w1 = S
and for each i, wi+1 is obtained from wi by replacing a non-terminal symbol with the
right-hand-side of one of its rules

• Example:
• Grammar: <S> ::= <S><S> | (<S>) | ϵ
• Derivations:

<S>⇒ (<S>)⇒ ()
<S>⇒ <S><S>⇒ <S>(<S>)⇒ (<S>)(<S>)⇒ ()(<S>)⇒ ()()
<S>⇒ <S><S>⇒ <S>(<S>)⇒ <S>()⇒ (<S>)()⇒ ((<S>))()⇒ (())()

• Formally:
• For each i, there is some u, v ∈ (N ∪ Σ)∗ some A ∈ N, and some x ∈ (N ∪ Σ)∗ such that

wi = uAv, wi+1 = uxv, and (A, x) ∈ R.

• The set of all strings w ∈ Σ∗ such that G has a derivation of w is the language of G, written
L(G).

• A derivation is leftmost if we always substitute the leftmost non-terminal, and rightmost if
we always substitute the rightmost non-terminal.

Derivations

• A derivation consists of a finite sequence of words w1, ...,wn ∈ (N ∪ Σ)∗ such that w1 = S
and for each i, wi+1 is obtained from wi by replacing a non-terminal symbol with the
right-hand-side of one of its rules

• Example:
• Grammar: <S> ::= <S><S> | (<S>) | ϵ
• Derivations:

<S>⇒ (<S>)⇒ ()
<S>⇒ <S><S>⇒ <S>(<S>)⇒ (<S>)(<S>)⇒ ()(<S>)⇒ ()()
<S>⇒ <S><S>⇒ <S>(<S>)⇒ <S>()⇒ (<S>)()⇒ ((<S>))()⇒ (())()

• Formally:
• For each i, there is some u, v ∈ (N ∪ Σ)∗ some A ∈ N, and some x ∈ (N ∪ Σ)∗ such that

wi = uAv, wi+1 = uxv, and (A, x) ∈ R.

• The set of all strings w ∈ Σ∗ such that G has a derivation of w is the language of G, written
L(G).

• A derivation is leftmost if we always substitute the leftmost non-terminal, and rightmost if
we always substitute the rightmost non-terminal.

Parse trees
• A parse tree is a tree representation of a derivation

• Each leaf node is labelled with a terminal
• Each internal node is labelled with a non-terminal

• If an internal node has label X, its children (read left-to-right) are the right-hand-side of a rule w/
left-hand-side X

• The root is labelled with the start symbol
Parse tree for ()(), with grammar <S> ::= <S><S> | (<S>) | ϵ

<S>

<S> <S>

(<S>)

ϵ

(<S>)

ϵ

Parse trees
• A parse tree is a tree representation of a derivation

• Each leaf node is labelled with a terminal
• Each internal node is labelled with a non-terminal

• If an internal node has label X, its children (read left-to-right) are the right-hand-side of a rule w/
left-hand-side X

• The root is labelled with the start symbol

• Construct a parse tree from a derivating by “parallelizing” non-terminals
• Parse tree corresponds to many derivations

• Exactly one leftmost derivation (and exactly one rightmost derivation).

Ambiguity
• A context-free grammar is ambiguous if there are two different parse trees for the same

word.
• Equivalently: a grammar is ambiguous if some word has two different left-most derivations

<expr> ::=<int> | <var> | <expr>+<expr> | <expr>*<expr> | (<expr>)
<var> ::=a | ... | z
<int> ::=0 | ... | 9

<expr>

<var>

x

+ <expr>

<var>

y

* <var>

z

<expr>

<var>

z

*<expr>

<var>

x

+ <var>

y

x+y*z

Eliminating ambiguity

• Ambiguity can often be eliminated by refactoring the grammar
• Some languages are inherently ambiguous: context-free, but every grammar that accepts the

language is ambiguous. E.g. {aibjck : i = j or j = k}.

• Unambiguous expression grammar

<expr> ::=<term>+<expr> | <term>
<term> ::=<term>*<factor> | <factor>

<factor> ::=<var> | <int> | (<expr>)

• + associates to the right and and * associates to the left (recursive case right (respectively, left)
of operator)

• * has higher precedence than + (* is farther from start symbol)

Eliminating ambiguity

• Ambiguity can often be eliminated by refactoring the grammar
• Some languages are inherently ambiguous: context-free, but every grammar that accepts the

language is ambiguous. E.g. {aibjck : i = j or j = k}.

• Unambiguous expression grammar

<expr> ::=<term>+<expr> | <term>
<term> ::=<term>*<factor> | <factor>

<factor> ::=<var> | <int> | (<expr>)

• + associates to the right and and * associates to the left (recursive case right (respectively, left)
of operator)

• * has higher precedence than + (* is farther from start symbol)

Regular languages are context-free

Suppose that L is a regular language. Then there is an NFA A = (Q,Σ,∆, s,F) such that
L(A) = L. How can we construct a context-free grammar that accepts L?

G = (N,Σ,R,S), where:
• N = Q
• S = s
• R = {q ::= aq′ : (q, a, q′) ∈ ∆} ∪ {q ::= ϵ : q ∈ F}
• Consequence: could fold lexer definition into grammar definition
• Why not?

• Separation of concerns
• Ambiguity is easily understood at lexer level, not parser level
• Parser generators only handle some context-free grammars

• Non-determinism is easy at the lexer level (NFA → DFA conversion)
• Non-determinism is hard at the parser level (deterministic CFL ̸= non-deterministic CFL)

Regular languages are context-free

Suppose that L is a regular language. Then there is an NFA A = (Q,Σ,∆, s,F) such that
L(A) = L. How can we construct a context-free grammar that accepts L?
G = (N,Σ,R,S), where:
• N = Q
• S = s
• R = {q ::= aq′ : (q, a, q′) ∈ ∆} ∪ {q ::= ϵ : q ∈ F}

• Consequence: could fold lexer definition into grammar definition
• Why not?

• Separation of concerns
• Ambiguity is easily understood at lexer level, not parser level
• Parser generators only handle some context-free grammars

• Non-determinism is easy at the lexer level (NFA → DFA conversion)
• Non-determinism is hard at the parser level (deterministic CFL ̸= non-deterministic CFL)

Regular languages are context-free

Suppose that L is a regular language. Then there is an NFA A = (Q,Σ,∆, s,F) such that
L(A) = L. How can we construct a context-free grammar that accepts L?
G = (N,Σ,R,S), where:
• N = Q
• S = s
• R = {q ::= aq′ : (q, a, q′) ∈ ∆} ∪ {q ::= ϵ : q ∈ F}
• Consequence: could fold lexer definition into grammar definition
• Why not?

• Separation of concerns
• Ambiguity is easily understood at lexer level, not parser level
• Parser generators only handle some context-free grammars

• Non-determinism is easy at the lexer level (NFA → DFA conversion)
• Non-determinism is hard at the parser level (deterministic CFL ̸= non-deterministic CFL)

Pushdown automata

• Pushdown automata recognize context-free languages
• PDA:Context-free lanuages :: DFA:Regular languages
• PDA ∼ NFA + a stack

• Parser generator compiles (restricted) grammar to (restricted) PDA
• Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | ϵ:

• Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

q0start q1 qf
ϵ, ϵ → $ ϵ, $ → ϵ

(, ϵ → L

),L → ϵ

Read nothing, push $

Read (, push L

Read), pop L

Read nothing, pop $

Pushdown automata

• Pushdown automata recognize context-free languages
• PDA:Context-free lanuages :: DFA:Regular languages
• PDA ∼ NFA + a stack

• Parser generator compiles (restricted) grammar to (restricted) PDA
• Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | ϵ:

• Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

q0start q1 qf
ϵ, ϵ → $ ϵ, $ → ϵ

(, ϵ → L

),L → ϵ

Read nothing, push $

Read (, push L

Read), pop L

Read nothing, pop $

Pushdown automata

• Pushdown automata recognize context-free languages
• PDA:Context-free lanuages :: DFA:Regular languages
• PDA ∼ NFA + a stack

• Parser generator compiles (restricted) grammar to (restricted) PDA
• Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | ϵ:

• Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

q0start q1 qf
ϵ, ϵ → $ ϵ, $ → ϵ

(, ϵ → L

),L → ϵ

Read nothing, push $

Read (, push L

Read), pop L

Read nothing, pop $

Pushdown automata

• Pushdown automata recognize context-free languages
• PDA:Context-free lanuages :: DFA:Regular languages
• PDA ∼ NFA + a stack

• Parser generator compiles (restricted) grammar to (restricted) PDA
• Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | ϵ:

• Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

q0start q1 qf
ϵ, ϵ → $ ϵ, $ → ϵ

(, ϵ → L

),L → ϵ

Read nothing, push $

Read (, push L

Read), pop L

Read nothing, pop $

Pushdown automata

• Pushdown automata recognize context-free languages
• PDA:Context-free lanuages :: DFA:Regular languages
• PDA ∼ NFA + a stack

• Parser generator compiles (restricted) grammar to (restricted) PDA
• Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | ϵ:

• Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

q0start q1 qf
ϵ, ϵ → $ ϵ, $ → ϵ

(, ϵ → L

),L → ϵ

Read nothing, push $

Read (, push L

Read), pop L

Read nothing, pop $

Pushdown automata, formally

• A push-down automaton A = (Q,Σ,Γ,∆, s,F) consists of
• Q: a finite set of states
• Σ: an (input) alphabet
• Γ: a (stack) alphabet
• ∆ ⊆ Q︸︷︷︸

source

× (Σ ∪ {ϵ})︸ ︷︷ ︸
read input

× Γ∗︸︷︷︸
read stack

× Q︸︷︷︸
dest

× Γ∗︸︷︷︸
write stack

, the transition relation

• s ∈ Q: start state
• F ⊆ Q: set of final (accepting) states

• A pushdown automaton accepts a word w if w can be written as w1w2...wn (each
wi ∈ (Σ ∪ {ϵ})) s.t. there exists q0, q1, ..., qn ∈ Q and v0, v1, ..., vn ∈ Γ∗ such that

1 q0 = s and v0 = ϵ (i.e., the machine starts at the start state with an empty stactk)
2 for all i, we have (qi,wi+1, a, qi+1, b) ∈ ∆, where vi = at and vi+1 = bt for some a, b, t ∈ Γ∗

3 qm ∈ F. (i.e., the machine ends at a final state).

Pushdown automata, formally

• A push-down automaton A = (Q,Σ,Γ,∆, s,F) consists of
• Q: a finite set of states
• Σ: an (input) alphabet
• Γ: a (stack) alphabet
• ∆ ⊆ Q︸︷︷︸

source

× (Σ ∪ {ϵ})︸ ︷︷ ︸
read input

× Γ∗︸︷︷︸
read stack

× Q︸︷︷︸
dest

× Γ∗︸︷︷︸
write stack

, the transition relation

• s ∈ Q: start state
• F ⊆ Q: set of final (accepting) states

• A pushdown automaton accepts a word w if w can be written as w1w2...wn (each
wi ∈ (Σ ∪ {ϵ})) s.t. there exists q0, q1, ..., qn ∈ Q and v0, v1, ..., vn ∈ Γ∗ such that

1 q0 = s and v0 = ϵ (i.e., the machine starts at the start state with an empty stactk)
2 for all i, we have (qi,wi+1, a, qi+1, b) ∈ ∆, where vi = at and vi+1 = bt for some a, b, t ∈ Γ∗

3 qm ∈ F. (i.e., the machine ends at a final state).

