COS320: Compiling Techniques

Zak Kincaid

March 26,2024

Analysis and Optimization

Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

Optimization

¢ Optimization operates as a sequence of IR-to-IR transformations. Each transformation is
expected to:

® improve performance (time, space, power)
® not change the high-level (defined) behavior of the program

¢ Each optimization pass does something small and simple.
® Combination of passes can yield sophisticated transformations

Optimization

Optimization operates as a sequence of IR-to-IR transformations. Each transformation is
expected to:

® improve performance (time, space, power)

® not change the high-level (defined) behavior of the program
Each optimization pass does something small and simple.

® Combination of passes can yield sophisticated transformations
Optimization simplifies compiler writing

® More modular: can translate to IR in a simple-but-inefficient way, then optimize
Optimization simplifies programming

® Programmer can spend less time thinking about low-level performance issues

® More portable: compiler can take advantage of the characteristics of a particular machine

Algebraic simplification

Idea: replace complex expressions with simpler / cheaper ones
exl —e

O+e—e
2x3—6
—(—e€) = e

ex4d — e«2

Loop unrolling

¢ Idea: avoid branching by trading space for time.
¢ Can expose opportunities for using SIMD instructions

long array_sum (long *a, long n) {

long i;
long sum = o;
long array_sum (long *a, long n) { for (i =0; i< n%4; ++) {
long i; sum += *(a + 17);
long sum = o; }
for (i =0; i< mn; #++) { for (; i< mn; i+=4) {
sum += *x(a + 17); — sum += *x(a + 7);
} sum += x(a + 7 + 1);
return sum; sum += x(a + 1 + 2);
} sum += x(a + 7 + 3);
3
return sum;

Strength reduction

Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

long irace (long *m, long n) {

long trace (long *m, long n) { long i;
long i; long result = 0;
long result = 0; long *next = m;
for (i =0; ¢ < n; #++) { for (i = 0; i< n; #++) {
result += *(m + *n + 7); — result += *next;
} next += n + 1;
return result; 3
3} return result;

Optimization and Analysis

e Program analysis: conservatively approximate the run-time behavior of a program at
compile time.

® Type inference: find the type of value each expression will evaluate to at run time.
Conservative in the sense that the analysis will abort if it cannot find a type for a variable, even
if one exists.

® Constant propagation: if a variable only holds on value at run time, find that value.
Conservative in the sense that analysis may fail to find constant values for variables that have
them.

Optimization and Analysis

e Program analysis: conservatively approximate the run-time behavior of a program at
compile time.

® Type inference: find the type of value each expression will evaluate to at run time.
Conservative in the sense that the analysis will abort if it cannot find a type for a variable, even
if one exists.

® Constant propagation: if a variable only holds on value at run time, find that value.
Conservative in the sense that analysis may fail to find constant values for variables that have
them.

e Optimization passes are typically informed by analysis

® Analysis lets us know which transformations are safe
® Conservative analysis = never perform an unsafe optimization, but may miss some safe
optimizations.

Control Flow Graphs (CFG)

store sum = @

br loop

int sum__upto(int n) {
int sum = 0;
while (n > 0) {
sum += m;
n--;
}

return sum;

o

load tmpl = n
let tmp2 = @ - n

cbr 1t tmp2 body exit

F

load tmp9 = sum

load tmp4 = sum

load tmp5 = n

let tmp6 = tmp4 + tmp6
store sum = tmp6

load tmp7 = n

let tmp8 = tmp7 - 1
store n = tmp8

br loop

~__

return tmp9

¢ Control flow graphs are one of the basic data structures used to represent programs in

many program analyses
e Recall: A control flow graph (CFG) for a procedure Pis a directed, rooted graph
G = (N, E, r) where
¢ The nodes are basic blocks of P
® Thereis an edge n; — n; € Eiff n; may execute immediately after n;
® There is a distinguished entry block r where the execution of the procedure begins

Simple imperative language

¢ Suppose that we have the following language:

<instr> ::=<var> = add<opn>, <opn>
| <var> = mul<opn>, <opn>
| <var> = opn
<opn> ::=<int> | <var>
<block> ::=<instr><block> | <term>
<term> ::=blez<opn>,<label>, <label>
| return <opn>

<program> ::=<program> <label> : <block> | <block>

¢ Note: no uids, no SSA
* Well take a look at how SSA affects program analysis later

Constant propagation

* The goal of constant propagation: determine at each instruction 7 a constant environment
® A constant environment is a symbol table mapping each variable z to one of:

® aninteger n (indicating that 's value is n whenever the program is at 1)
® T (indicating that z might take more than one value at 1)
® | (indicating that z may take no values at run-time - [is unreachable)

* Motivation: can evaluate expressions at compile time to save on run time

add 1, 2
mul x, 11
add x, y

N < X
1

Constant propagation

* The goal of constant propagation: determine at each instruction 7 a constant environment
® A constant environment is a symbol table mapping each variable z to one of:

® aninteger n (indicating that 's value is n whenever the program is at 1)
® T (indicating that z might take more than one value at 1)
® | (indicating that z may take no values at run-time - [is unreachable)

* Motivation: can evaluate expressions at compile time to save on run time

QH T,y—~T,z— T}

X = add 1, 2
y = mul x, 11
z = add x, y

Constant propagation

* The goal of constant propagation: determine at each instruction 7 a constant environment
® A constant environment is a symbol table mapping each variable z to one of:

® aninteger n (indicating that 's value is n whenever the program is at 1)
® T (indicating that z might take more than one value at 1)
® | (indicating that z may take no values at run-time - [is unreachable)

* Motivation: can evaluate expressions at compile time to save on run time

{x—=>T,y—T,z— T}

{x—=3,y—»T,z—T}

add 1, 2
mul x, 11
add x, y

N < X
1

Constant propagation

* The goal of constant propagation: determine at each instruction 7 a constant environment
® A constant environment is a symbol table mapping each variable z to one of:

® aninteger n (indicating that 's value is n whenever the program is at 1)
® T (indicating that z might take more than one value at 1)
® | (indicating that z may take no values at run-time - [is unreachable)

* Motivation: can evaluate expressions at compile time to save on run time

{x—=>T,y—T,z— T}

add 1, 2
mul x, 11
add x, y

N < X
1

{x+—3,y+—33,z— T}

Constant propagation

* The goal of constant propagation: determine at each instruction 7 a constant environment
® A constant environment is a symbol table mapping each variable z to one of:

® aninteger n (indicating that 's value is n whenever the program is at 1)
® T (indicating that z might take more than one value at 1)
® | (indicating that z may take no values at run-time - [is unreachable)

* Motivation: can evaluate expressions at compile time to save on run time

{x—=>T,y—T,z— T}

x
|
w

mul x, 11
add x, y

N <
1

{x+—3,y+—33,z— T}

Constant propagation

* The goal of constant propagation: determine at each instruction 7 a constant environment
® A constant environment is a symbol table mapping each variable z to one of:

® aninteger n (indicating that 's value is n whenever the program is at 1)
® T (indicating that z might take more than one value at 1)
® | (indicating that z may take no values at run-time - [is unreachable)

* Motivation: can evaluate expressions at compile time to save on run time

{x—=>T,y—T,z— T}

x
|
w

33
add x, y

N <
1

{x+—3,y+—33,z— T}

Constant propagation

* The goal of constant propagation: determine at each instruction 7 a constant environment
® A constant environment is a symbol table mapping each variable z to one of:

® aninteger n (indicating that 's value is n whenever the program is at 1)
® T (indicating that z might take more than one value at 1)
® | (indicating that z may take no values at run-time - [is unreachable)

* Motivation: can evaluate expressions at compile time to save on run time

{x—=>T,y—T,z— T}

x
|
w

33

{x+—3,y+—33,z— T}

Propagating constants through instructions

® Goal: given a constant environment C'and an instruction
® x = add opny, opne
® z=mul opny, opny
® = opn
Assuming that constant environment C'holds before the instruction, what is the constant environment after
the instruction?

Propagating constants through instructions

® Goal: given a constant environment C'and an instruction
® x = add opny, opne
® z=mul opny, opny
® = opn
Assuming that constant environment C'holds before the instruction, what is the constant environment after
the instruction?
® Define an evaluator for operands:

C(opn) if opnis a variable
opn if opn is an int

eval(opn, C) = {

Propagating constants through instructions

® Goal: given a constant environment C'and an instruction

® x = add opny, opne
® z=mul opny, opny

® = opn

Assuming that constant environment C'holds before the instruction, what is the constant environment after

the instruction?

® Define an evaluator for operands:

eval(opn, C) = {

® Define an evaluator for instructions:

post(instr, C) =

1

C{z — eval(opn, C)}

C{z— T}

C{z — eval(opni, C) + eval(opnz, C)}
C{z — eval(opni, C) * eval(opnz, C)}

C(opn) if opnis a variable
opn if opn is an int

if Cis L

if instris z = opn

if eval(opni, C) = T V eval(opnz, C) = T
if instris = add opn,,opn,

if instris = mul opn,,opn,

Propagating constants through basic blocks

* How do we propagate a constant environment through a basic block?

Propagating constants through basic blocks

* How do we propagate a constant environment through a basic block?

e Block takes the form instry, . .., instry,, term.
take post(block, C) = post(instry, . .. post(instry, C)...)

Propagating constants across edges

¢ If a block has exactly one predecessor: constant environment at entry is constant
environment at exit of predecessor

Propagating constants across edges

¢ If a block has exactly one predecessor: constant environment at entry is constant

environment at exit of predecessor

¢ If a block has multiple predecessors, must combine constant environments of both:

X =0

y = x+1
z = y+2
br tgt

X =0
y =0
br tgt

{x = 0,y—1,z+ 3}

<::::Eg;:7£y —0,z— T}
—

Propagating constants across edges

¢ If a block has exactly one predecessor: constant environment at entry is constant
environment at exit of predecessor
¢ If a block has multiple predecessors, must combine constant environments of both:

X =0

y = x+1 X:z
z = y+2 y=
br tgt br_tet

[x 0,y 1,2+ 3} \A / @YHO,ZHT}
C {x—=0,y—T,z+— T}

Propagating constants across edges

¢ If a block has exactly one predecessor: constant environment at entry is constant
environment at exit of predecessor
¢ If a block has multiple predecessors, must combine constant environments of both:
¢ Merge operator LI defined as:
®celUl=1Ue=e
o (61U ea)(a) = e1(z) if er(z) = ex(x)

T otherwise

; i S+1 X =0
z = y+2 y = °
br tgt br_tet

[x 0,y 1,2+ 3} \A / @yHO,ZHT}
C {x—=0,y—T,z+— T}

Propagating constants through control flow graphs

® For acyclic graphs:

Propagating constants through control flow graphs

* For acyclic graphs: topologically sort basic blocks, propagate constant environments
forward

¢ Constant environment for entry node maps each variable to T

Propagating constants through control flow graphs

* For acyclic graphs: topologically sort basic blocks, propagate constant environments
forward

¢ Constant environment for entry node maps each variable to T
* What about loops?

® Recall: a partial order C is a binary relation that is

® Reflexive: a C «a
® Transitive: ¢ C band b C cimplies a C ¢
¢ Antisymmetric: ¢ C band b C aimplies a = b

e Examples: the subset relation, the divisibility relation on the naturals, ...

® Recall: a partial order C is a binary relation that is

® Reflexive: a C «a
® Transitive: ¢ C band b C cimplies a C ¢
¢ Antisymmetric: ¢ C band b C aimplies a = b

e Examples: the subset relation, the divisibility relation on the naturals, ...
® Place apartialorderon Z U {L, T}: L C n C T (most information to least information)

Recall: a partial order C is a binary relation that is

® Reflexive: a C «a
® Transitive: ¢ C band b C cimplies a C ¢
¢ Antisymmetric: ¢ C band b C aimplies a = b

Examples: the subset relation, the divisibility relation on the naturals, ...
Place a partial orderon ZU { L, T}: L C n C T (most information to least information)

Lift the ordering to constant environments: fC giff f{z) C g(z) forall «

® fLC ¢ fisa “better’ constant environment than g
® fsends zto T implies gsends zto T

Recall: a partial order C is a binary relation that is

® Reflexive: a C «a
® Transitive: ¢ C band b C cimplies a C ¢
¢ Antisymmetric: ¢ C band b C aimplies a = b

Examples: the subset relation, the divisibility relation on the naturals, ...

Place a partial orderon ZU { L, T}: L C n C T (most information to least information)
Lift the ordering to constant environments: fC giff f{z) C g(z) forall «

® fLC ¢ fisa “better’ constant environment than g

® fsends zto T implies gsends zto T
The merge operation L is the least upper bound in this order:

*hE(hufk)and L C (fUf)
® Forany f suchthatf; C fand fo C f, we have (fy U fo) C f

Constant propagation as a constraint system

® Let G = (N, E, s) be a control flow graph.
* For each basic block bb € N, associate two constant environments IN[bb] and OUT bb]

® IN|[bb] is the constant environment at the entry of bb
® OUT|bb] is the constant environment at the exit of bb

Constant propagation as a constraint system

® Let G = (N, E, s) be a control flow graph.

* For each basic block bb € N, associate two constant environments IN[bb] and OUT bb]
® IN|[bb] is the constant environment at the entry of bb
® OUT|bb] is the constant environment at the exit of bb

¢ Say that the assignment IN, OUT is conservative if

@ IN[4] assigns each variable T
@ For each node bb € N,
OUT|bb] O post(bb,IN[bb])

© For each edge src — dst € F,
IN[dst] 3 OUT[src|

Constant propagation as a constraint system

Let G = (N, E, s) be a control flow graph.
For each basic block bb € N, associate two constant environments IN[bb] and OUT bb]
® IN|[bb] is the constant environment at the entry of bb
® OUT|bb] is the constant environment at the exit of bb
Say that the assignment IN, OUT is conservative if
@ IN[4] assigns each variable T

@ For each node bb € N,
OUT|bb| 3 post(bb,IN|bb])

© For each edge src — dst € F,
IN[dst] 3 OUT[src|

Fact: if IN, OUT is conservative, then

e [f IN[bb](z) = n, then whenever program execution reaches bb entry, the value of zis n
® |f IN[bb](z) = L, then program execution cannot reach bb
® Similarly for OUT

® Think of IN[bb] and OUT|bb] as variables in a constraint system.
* The constraints may have multiple solutions

® Recall: when constant environment sends a variables z to a constant (not T), can replace
reads to z with that constant
¢ More constant assigments = more optimization

® Think of IN[bb] and OUT|bb] as variables in a constraint system.
* The constraints may have multiple solutions
® Recall: when constant environment sends a variables z to a constant (not T), can replace
reads to z with that constant
¢ More constant assigments = more optimization
e Want [east conservative assignment

© IN, OUT is conservative

@ IfIN’, OUT’ is a conservative assignment, then for any bb we have
* IN[bb] C IN'[bb]
° OUT[bb] C OUT’[bb]

Computing the least conservative assignment of constant environments

* Initialize IN[s] to the constant environment that sends every variable to T and OUT|s] to
the constant environment that sends every variable to L.

e Initialize IN[bb] and OUT bb] to the constant environment that sends every variable to L
for every other basic block

Computing the least conservative assignment of constant environments

* Initialize IN[s] to the constant environment that sends every variable to T and OUT|s] to
the constant environment that sends every variable to L.
e Initialize IN[bb] and OUT bb] to the constant environment that sends every variable to L
for every other basic block
¢ Choose a constraint that is not satisfied by IN, OUT
® |f there is basic block bb with OUT[bb] A post(bb, IN[bb]), then set

OUT|bb] := post(bb, IN[bb])
® If thereis an edge src — dst € E with IN[dst] 2 OUT|src|, then set

IN[dst] := IN[dst] Ll OUTsrc]

e Terminate when all constraints are satisfied.

Computing the least conservative assignment of constant environments

Initialize IN[s] to the constant environment that sends every variable to T and OUT|[s| to
the constant environment that sends every variable to L.

Initialize IN[bb] and OUT|[bb] to the constant environment that sends every variable to |
for every other basic block
Choose a constraint that is not satisfied by IN, OUT

® |f there is basic block bb with OUT[bb] A post(bb, IN[bb]), then set

OUT|bb] := post(bb, IN|bb])
® If thereis an edge src — dst € E with IN[dst] 2 OUT|src|, then set
IN[dst] := IN[dst] Ll OUTsrc]

Terminate when all constraints are satisfied.

This algorithm always converges on the least conservative assignment of constant
environments

Next week: dataflow analysis

* Framework for conservative analysis of program behavior
* Worklist algorithm: general algorithm for solving dataflow analysis problems

