COS320: Compiling Techniques

Zak Kincaid

March 26, 2024

Analysis and Optimization

Compiler phases (simplified)

Optimization

- Optimization operates as a sequence of IR-to-IR transformations. Each transformation is expected to:
	- *• improve performance* (time, space, power)
	- *• not change the high-level (defined) behavior of the program*
- *•* Each optimization pass does something small and simple.
	- *• Combination* of passes can yield sophisticated transformations

Optimization

- *•* Optimization operates as a sequence of IR-to-IR transformations. Each transformation is expected to:
	- *• improve performance* (time, space, power)
	- *• not change the high-level (defined) behavior of the program*
- *•* Each optimization pass does something small and simple.
	- *• Combination* of passes can yield sophisticated transformations
- *•* Optimization simplifies compiler writing
	- *•* More modular: can translate to IR in a simple-but-inefficient way, then optimize
- *•* Optimization simplifies programming
	- *•* Programmer can spend less time thinking about low-level performance issues
	- *•* More portable: compiler can take advantage of the characteristics of a particular machine

Algebraic simplification

Idea: replace complex expressions with simpler / cheaper ones

 $e * 1 \rightarrow e$ $0 + e \rightarrow e$ $2 * 3 \to 6$ *−*(*−e*) *→ e* $e * 4 \rightarrow e * 2$

Loop unrolling

→

- Idea: avoid branching by trading space for time.
- *•* Can expose opportunities for using SIMD instructions

```
long array \, sum \, (long \, *a, \, long \, n) {
  long i;
  \log sum = 0;
  for (i = 0; i < n; i++)sum \neq x (a + i):
  }
  return sum;
}
```

```
long array \, sum \, (long \, *a, \, long \, n) {
  long i;
  \log sum = 0;
  for (i = 0; i < n % 4; i++) {
    sum \neq x (a + i):
  }
  for (; i < n; i + 1 = 4) {
    sum \neq x (a + i):
     sum \ +\ = \ \star(a \ + \ i \ + \ 1);sum \neq x(a + i + 2):
    sum \neq x (a + i + 3);
  }
  return sum;
}
```
Strength reduction

Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

```
long trace (long *m, long n) {
  long i;
  long result = 0;
  for (i = 0; i < n; i^{++}) {
    result \neq \star(m + i \star n + i);}
  return result;
}
                                          →
                                               long trace (long *m, long n) {
                                                  long i;
                                                  long result = 0;
                                                  long *next = m;
                                                 for (i = 0; i < n; i++)result += *next;
                                                    next += n + 1;
                                                  }
                                                  return result;
                                                }
```
Optimization and Analysis

- *• Program analysis*: conservatively approximate the run-time behavior of a program at compile time.
	- *•* Type inference: find the type of value each expression will evaluate to at run time. *Conservative* in the sense that the analysis will abort if it cannot find a type for a variable, even if one exists.
	- *•* Constant propagation: if a variable only holds on value at run time, find that value. *Conservative* in the sense that analysis may fail to find constant values for variables that have them.

Optimization and Analysis

- *• Program analysis*: conservatively approximate the run-time behavior of a program at compile time.
	- *•* Type inference: find the type of value each expression will evaluate to at run time. *Conservative* in the sense that the analysis will abort if it cannot find a type for a variable, even if one exists.
	- *•* Constant propagation: if a variable only holds on value at run time, find that value. *Conservative* in the sense that analysis may fail to find constant values for variables that have them.
- *•* Optimization passes are typically informed by analysis
	- *•* Analysis lets us know which transformations are safe
	- *•* Conservative analysis *⇒* never perform an unsafe optimization, but may miss some safe optimizations.

Control Flow Graphs (CFG)

- *•* Control flow graphs are one of the basic data structures used to represent programs in many program analyses
- *•* Recall: A *control flow graph* (CFG) for a procedure *P* is a directed, rooted graph $G = (N, E, r)$ where
	- *•* The nodes are basic blocks of *P*
	- There is an edge $n_i \rightarrow n_j \in E$ iff n_j may execute immediately after n_i
	- *•* There is a distinguished entry block *r* where the execution of the procedure begins

Simple imperative language

• Suppose that we have the following language:

<instr> ::=<var> = add<opn>*,* <opn> *|* <var> = mul<opn>*,* <opn> $\langle \text{var} \rangle = \text{on}$ <opn> ::=<int> *|* <var> <block> ::=<instr><block> *|* <term> <term> ::=blez<opn>*,* <label>*,* <label> *|* return <opn> <program> ::=<program> <label> : <block> *|* <block>

• Note: no uids, no SSA

• We'll take a look at how SSA affects program analysis later

- *•* The goal of constant propagation: determine at each instruction *I* a *constant environment*
	- *•* A constant environment is a symbol table mapping each variable *x* to one of:
		- *•* an integer *n* (indicating that *x*'s value is *n* whenever the program is at *I*)
		- *• >* (indicating that *x* might take more than one value at *I*)
		- *• ⊥* (indicating that *x* may take no values at run-time *I* is unreachable)
- *•* Motivation: can evaluate expressions at compile time to save on run time

 $x = add 1, 2$ $v = mul x$, 11 $z = add x, y$

- *•* The goal of constant propagation: determine at each instruction *I* a *constant environment*
	- *•* A constant environment is a symbol table mapping each variable *x* to one of:
		- *•* an integer *n* (indicating that *x*'s value is *n* whenever the program is at *I*)
		- *• >* (indicating that *x* might take more than one value at *I*)
		- *• ⊥* (indicating that *x* may take no values at run-time *I* is unreachable)
- *•* Motivation: can evaluate expressions at compile time to save on run time

- *•* The goal of constant propagation: determine at each instruction *I* a *constant environment*
	- *•* A constant environment is a symbol table mapping each variable *x* to one of:
		- *•* an integer *n* (indicating that *x*'s value is *n* whenever the program is at *I*)
		- *• >* (indicating that *x* might take more than one value at *I*)
		- *• ⊥* (indicating that *x* may take no values at run-time *I* is unreachable)
- *•* Motivation: can evaluate expressions at compile time to save on run time

- *•* The goal of constant propagation: determine at each instruction *I* a *constant environment*
	- *•* A constant environment is a symbol table mapping each variable *x* to one of:
		- *•* an integer *n* (indicating that *x*'s value is *n* whenever the program is at *I*)
		- *• >* (indicating that *x* might take more than one value at *I*)
		- *• ⊥* (indicating that *x* may take no values at run-time *I* is unreachable)
- *•* Motivation: can evaluate expressions at compile time to save on run time

- *•* The goal of constant propagation: determine at each instruction *I* a *constant environment*
	- *•* A constant environment is a symbol table mapping each variable *x* to one of:
		- *•* an integer *n* (indicating that *x*'s value is *n* whenever the program is at *I*)
		- *• >* (indicating that *x* might take more than one value at *I*)
		- *• ⊥* (indicating that *x* may take no values at run-time *I* is unreachable)
- *•* Motivation: can evaluate expressions at compile time to save on run time

- *•* The goal of constant propagation: determine at each instruction *I* a *constant environment*
	- *•* A constant environment is a symbol table mapping each variable *x* to one of:
		- *•* an integer *n* (indicating that *x*'s value is *n* whenever the program is at *I*)
		- *• >* (indicating that *x* might take more than one value at *I*)
		- *• ⊥* (indicating that *x* may take no values at run-time *I* is unreachable)
- *•* Motivation: can evaluate expressions at compile time to save on run time

- *•* The goal of constant propagation: determine at each instruction *I* a *constant environment*
	- *•* A constant environment is a symbol table mapping each variable *x* to one of:
		- *•* an integer *n* (indicating that *x*'s value is *n* whenever the program is at *I*)
		- *• >* (indicating that *x* might take more than one value at *I*)
		- *• ⊥* (indicating that *x* may take no values at run-time *I* is unreachable)
- *•* Motivation: can evaluate expressions at compile time to save on run time

Propagating constants through instructions

- *•* Goal: given a constant environment *C* and an instruction
	- $x =$ add opn_1 , opn_2
	- $x = \text{mul } opn_1, opn_2$
	- $x = opn$

Assuming that constant environment *C* holds *before* the instruction, what is the constant environment *after* the instruction?

Propagating constants through instructions

- *•* Goal: given a constant environment *C* and an instruction
	- $x =$ add opn_1 , opn_2
	- $x = \text{mul } opn_1, opn_2$
	- $x = opn$

Assuming that constant environment *C* holds *before* the instruction, what is the constant environment *after* the instruction?

• Define an evaluator for operands:

$$
eval(opn, C) = \begin{cases} C(opn) & \text{if opn is a variable} \\ opn & \text{if opn is an int} \end{cases}
$$

Propagating constants through instructions

- *•* Goal: given a constant environment *C* and an instruction
	- $x =$ add opn_1 , opn_2
	- $x = \text{mul } opn_1, opn_2$
	- $x = opn$

Assuming that constant environment *C* holds *before* the instruction, what is the constant environment *after* the instruction?

• Define an evaluator for operands:

$$
eval(opn, C) = \begin{cases} C(opn) & \text{if opn is a variable} \\ opn & \text{if opn is an int} \end{cases}
$$

• Define an evaluator for instructions:

$$
post(instr, C) = \begin{cases} \bot & \text{if } C \text{ is } \bot \\ C \{x \mapsto eval(opn, C)\} & \text{if } \text{instr is } x = opn \\ C \{x \mapsto \text{eval}(opn_1, C) + eval(opn_2, C)\} & \text{if } \text{instr is } x = adn \\ C \{x \mapsto eval(opn_1, C) + eval(opn_2, C)\} & \text{if } \text{instr is } x = add \text{ opn}_1, \text{opn}_2 \\ C \{x \mapsto eval(opn_1, C) * eval(opn_2, C)\} & \text{if } \text{instr is } x = \text{mul } \text{opn}_1, \text{opn}_2 \end{cases}
$$

Propagating constants through basic blocks

• How do we propagate a constant environment through a basic block?

Propagating constants through basic blocks

- How do we propagate a constant environment through a basic block?
- Block takes the form $instr_1, \ldots, instr_n, term$. $\mathbf{take}\ post(\mathit{block}, \mathit{C}) = \textit{post}(\mathit{instr}_n, \dots \mathit{post}(\mathit{instr}_1, \mathit{C}) \dots)$

• If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor

- *•* If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- *•* If a block has multiple predecessors, must combine constant environments of both:

- *•* If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- *•* If a block has multiple predecessors, must combine constant environments of both:

- *•* If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- *•* If a block has multiple predecessors, must combine constant environments of both:
- *•* Merge operator *⊔* defined as:

Propagating constants through control flow graphs

• For *acyclic graphs*:

Propagating constants through control flow graphs

- *•* For *acyclic graphs*: topologically sort basic blocks, propagate constant environments forward
	- *•* Constant environment for entry node maps each variable to *⊤*

Propagating constants through control flow graphs

- *•* For *acyclic graphs*: topologically sort basic blocks, propagate constant environments forward
	- *•* Constant environment for entry node maps each variable to *⊤*
- *•* What about loops?
- *•* Recall: a partial order *⊑* is a binary relation that is
	- *•* Reflexive: *a ⊑ a*
	- *•* Transitive: *a ⊑ b* and *b ⊑ c* implies *a ⊑ c*
	- *•* Antisymmetric: *a ⊑ b* and *b ⊑ a* implies *a* = *b*
- *•* Examples: the subset relation, the divisibility relation on the naturals, ...
- *•* Recall: a partial order *⊑* is a binary relation that is
	- *•* Reflexive: *a ⊑ a*
	- *•* Transitive: *a ⊑ b* and *b ⊑ c* implies *a ⊑ c*
	- *•* Antisymmetric: *a ⊑ b* and *b ⊑ a* implies *a* = *b*
- *•* Examples: the subset relation, the divisibility relation on the naturals, ...
- *•* Place a partial order on Z *∪ {⊥, ⊤}*: *⊥ ⊑ n ⊑ ⊤* (most information to least information)
- *•* Recall: a partial order *⊑* is a binary relation that is
	- *•* Reflexive: *a ⊑ a*
	- *•* Transitive: *a ⊑ b* and *b ⊑ c* implies *a ⊑ c*
	- *•* Antisymmetric: *a ⊑ b* and *b ⊑ a* implies *a* = *b*
- *•* Examples: the subset relation, the divisibility relation on the naturals, ...
- *•* Place a partial order on Z *∪ {⊥, ⊤}*: *⊥ ⊑ n ⊑ ⊤* (most information to least information)
- *•* Lift the ordering to constant environments: *f ⊑ g* iff *f*(*x*) *⊑ g*(*x*) for all *x*
	- *• f ⊑ g*: *f* is a "better" constant environment than *g*
	- *• f* sends *x* to *⊤* implies *g* sends *x* to *⊤*
- *•* Recall: a partial order *⊑* is a binary relation that is
	- *•* Reflexive: *a ⊑ a*
	- *•* Transitive: *a ⊑ b* and *b ⊑ c* implies *a ⊑ c*
	- *•* Antisymmetric: *a ⊑ b* and *b ⊑ a* implies *a* = *b*
- *•* Examples: the subset relation, the divisibility relation on the naturals, ...
- *•* Place a partial order on Z *∪ {⊥, ⊤}*: *⊥ ⊑ n ⊑ ⊤* (most information to least information)
- *•* Lift the ordering to constant environments: *f ⊑ g* iff *f*(*x*) *⊑ g*(*x*) for all *x*
	- *• f ⊑ g*: *f* is a "better" constant environment than *g*
	- *• f* sends *x* to *⊤* implies *g* sends *x* to *⊤*
- *•* The merge operation *⊔* is the *least upper bound* in this order:
	- $f_1 \sqsubset (f_1 \sqcup f_2)$ and $f_2 \sqsubset (f_1 \sqcup f_2)$
	- *•* For any f such that $f_1 ⊆ f'$ and $f_2 ⊆ f'$, we have $(f_1 ⊔ f_2) ⊆ f'$

Constant propagation as a constraint system

- Let $G = (N, E, s)$ be a control flow graph.
- *•* For each basic block *bb ∈ N*, associate two constant environments IN[*bb*] and OUT[*bb*]
	- *•* IN[*bb*] is the constant environment at the *entry* of *bb*
	- *•* OUT[*bb*] is the constant environment at the *exit* of *bb*

Constant propagation as a constraint system

- Let $G = (N, E, s)$ be a control flow graph.
- *•* For each basic block *bb ∈ N*, associate two constant environments IN[*bb*] and OUT[*bb*]
	- *•* IN[*bb*] is the constant environment at the *entry* of *bb*
	- *•* OUT[*bb*] is the constant environment at the *exit* of *bb*
- *•* Say that the assignment IN*,* **OUT** is **conservative** if
	- 1 IN[*s*] assigns each variable *⊤*
	- \bullet For each node *bb* \in *N*.

 $OUT(bb] \supset post(bb, IN(bb])$

3 For each edge *src* \rightarrow *dst* \in *E*,

IN[*dst*] *⊒* OUT[*src*]

Constant propagation as a constraint system

- Let $G = (N, E, s)$ be a control flow graph.
- *•* For each basic block *bb ∈ N*, associate two constant environments IN[*bb*] and OUT[*bb*]
	- *•* IN[*bb*] is the constant environment at the *entry* of *bb*
	- *•* OUT[*bb*] is the constant environment at the *exit* of *bb*
- *•* Say that the assignment IN*,* **OUT** is **conservative** if
	- 1 IN[*s*] assigns each variable *⊤*
	- \bullet For each node *bb* \in *N*.

 $OUT(bb] \supset post(bb, IN(bb])$

3 For each edge *src* \rightarrow *dst* \in *E*,

IN[*dst*] *⊒* OUT[*src*]

- *•* Fact: if IN*,* **OUT** is conservative, then
	- If IN $[bb](x) = n$, then whenever program execution reaches *bb* entry, the value of *x* is *n*
	- *•* If IN[*bb*](*x*) = *⊥*, then program execution cannot reach *bb*
	- *•* Similarly for OUT
- *•* Think of IN[*bb*] and OUT[*bb*] as *variables* in a constraint system.
- *•* The constraints may have multiple solutions
	- *•* Recall: when constant environment sends a variables *x* to a constant (not *⊤*), can replace reads to *x* with that constant
	- *•* More constant assigments *⇒* more optimization
- *•* Think of IN[*bb*] and OUT[*bb*] as *variables* in a constraint system.
- *•* The constraints may have multiple solutions
	- *•* Recall: when constant environment sends a variables *x* to a constant (not *⊤*), can replace reads to *x* with that constant
	- *•* More constant assigments *⇒* more optimization
- *•* Want *least* conservative assignment
	- **1** IN, OUT is conservative
	- 2 If IN*′ ,* OUT*′* is a conservative assignment, then for any *bb* we have
		- $IN[bb] \sqsubseteq IN'[bb]$
		- $OUT[bb] \sqsubseteq OUT'[bb]$

Computing the least conservative assignment of constant environments

- *•* Initialize IN[*s*] to the constant environment that sends every variable to *⊤* and OUT[*s*] to the constant environment that sends every variable to *⊥*.
- *•* Initialize IN[*bb*] and OUT[*bb*] to the constant environment that sends every variable to *⊥* for every other basic block

Computing the least conservative assignment of constant environments

- *•* Initialize IN[*s*] to the constant environment that sends every variable to *⊤* and OUT[*s*] to the constant environment that sends every variable to *⊥*.
- *•* Initialize IN[*bb*] and OUT[*bb*] to the constant environment that sends every variable to *⊥* for every other basic block
- *•* Choose a constraint that is *not* satisfied by IN*,* OUT
	- *•* If there is basic block *bb* with OUT[*bb*] *̸⊒ post*(*bb,*IN[*bb*]), then set

 $\text{OUT}[bb] := \text{post}(bb, \text{IN}[bb])$

• If there is an edge *src → dst ∈ E* with IN[*dst*] *̸⊒* OUT[*src*], then set

IN[*dst*] := IN[*dst*] *⊔* OUT[*src*]

• Terminate when all constraints are satisfied.

Computing the least conservative assignment of constant environments

- *•* Initialize IN[*s*] to the constant environment that sends every variable to *⊤* and OUT[*s*] to the constant environment that sends every variable to *⊥*.
- *•* Initialize IN[*bb*] and OUT[*bb*] to the constant environment that sends every variable to *⊥* for every other basic block
- *•* Choose a constraint that is *not* satisfied by IN*,* OUT
	- *•* If there is basic block *bb* with OUT[*bb*] *̸⊒ post*(*bb,*IN[*bb*]), then set

 $\text{OUT}[bb] := \text{post}(bb, \text{IN}[bb])$

• If there is an edge *src → dst ∈ E* with IN[*dst*] *̸⊒* OUT[*src*], then set

IN[*dst*] := IN[*dst*] *⊔* OUT[*src*]

- *•* Terminate when all constraints are satisfied.
- *• This algorithm always converges on the least conservative assignment of constant environments*

Next week: *dataflow analysis*

- *•* Framework for conservative analysis of program behavior
- *• Worklist algorithm*: general algorithm for solving dataflow analysis problems