COS3820: Compiling Techniques

Zak Kincaid

February 7, 2019

Today: OCaml cont'd

Review session

Today 6-8pm, room TBD

OCaml is an expression-oriented language

- An expression is something that evaluates to a value
- Contrast to a statement, which expresses an action

- Example: In OCaml, variables are immutable
- There is no statement can be used to over-write the value of a variable

OCaml is an expression-oriented language

- An expression is something that evaluates to a value
- Contrast to a statement, which expresses an action

- Example: In OCaml, variables are immutable
- There is no statement can be used to over-write the value of a variable

- Example: conditionals
- InJava: if is a statement

if (x <0 { x=-x; 3}

+ In OCaml: if is an expression

if (x < 9) then -x else x

This is a matter of taste:
- OCaml has reference cells
- let x = ref @ in exp (ref ~ mallocin C)

- Can over-write contents of reference cells: x := e
- Can over-write fields of mutable records (~ C structs): rec.field <- e

- Can over-write arrays: array. (i) <- e

This is a matter of taste:

- OCaml has reference cells
- let x = ref @ in exp (ref ~ mallocin C)
- Can over-write contents of reference cells: x := e
- Can over-write fields of mutable records (~ C structs): rec.field <- e
- Can over-write arrays: array. (i) <- e

- OCaml has statements: ref cell assignment, for and while loops, sequencing
- statements are expressions, which evaluate to () “unit”

let x = ref exp in (if (!x < @) then x := -(!'x) else (); !x)

This is a matter of taste:

- OCaml has reference cells
< let x = ref @ in exp (ref ~ mallocin C)
- Can over-write contents of reference cells: x := e
- Can over-write fields of mutable records (~ C structs): rec.field <- e
- Can over-write arrays: array. (i) <- e

- OCaml has statements: ref cell assignment, for and while loops, sequencing
- statements are expressions, which evaluate to () “unit”

let x = ref exp in (if (!x < @) then x := -(!'x) else (); !x)

Use sparingly

Imperative BST

type 'a node =
| Node of (int * 'a ref * 'a tree * 'a tree)
| Leaf
and 'a tree = (’'a node) ref
let insert key value tree =
let current = ref tree in
let continue = ref true in
while !continue do

match !(! current) with
| Leaf —>
(I'current) := Node (key, ref value, ref Leaf, ref Leaf)

| Node (k, v, left, right) —
if k = key then begin

v := value;
continue := false;
end else if k < key then
current := left
else
current := right

done

Functional BST

type 'a tree =
| Node of (int * 'a * 'a tree * 'a tree)
| Leaf
let rec insert key value tree =
match tree with
| Leaf —> Node (key, value, Leaf, Leaf)
| Node (k, v, left, right) —>
if k = key then
Node (k, value, left right)
else if k < key then
Node (k, v, insert key value left, right)
else
Node (k, v, left, insert key value right)

Functions

« (fun v -> e) is an expression, which evaluates to a value (closure)
- let f x y z = eissyntacticsugarforlet f = fun x -> (fun y -> (fun z -> e))
- Eg,thetypeof xisnot int * int -> int,itsint -> (int -> int)

let rec iterate =

fun (f:int — int) —>
fun (n:int) —>
if n = 0 then
(fun (x:int) —> x)
else
(fun (x:int) — f (iterate f (n—1) x))
let exp base n = iterate ((*) base) n 1

let two_to_five = exp 2 5

Algebraic data types

Simplest use-case: C-style enums

type color = Red | Green | Blue

(* This type definition defines three constructors (Red, Green, and Blue),
which evaluate to values of type color *)

let mycolor:color = Green

(* Can deconstruct using pattern matching (-~ switch in C) *)
let to_string (c:color) =

match ¢ with

| Red —> "red”

| Green —> "green”

| Blue —> "blue”

Unlike enums, each variant may contain a payload:

type point = float * float
type shape =
| Rectangle of point * point
| Circle of point * float

- Can be parameterized:
type ’a option = None | Some of ’a
- Can be recursive:

type expr = Var of string | Add of expr x expr | Mul of expr * expr
- Can be both:
type ’a list = Nil | Cons ("a * ’a list)

Pattern matching binds variables to payload

type point = float * float
type shape =
| Rectangle of point * point
| Circle of point x float

let area (s:shape) =
match s with
| Rectangle (topleft, bottomright) ->
(match topleft with
| (tlx,tly) -> match bottomright with
| (brx,bry) -> (brx -. tlx) *. (tly -. bry))
| Circle (center, radius) -> pi *. radius *. radius

Pattern matching binds variables to payload

type point = float * float
type shape =
| Rectangle of point * point
| Circle of point x float

let area (s:shape) =
match s with
| Rectangle (topleft, bottomright) ->
match topleft with
| (tlx,tly) -> match bottomright with
| (brx,bry) -> (brx -. tlx) x. (tly -. bry)
| Circle (center, radius) -> pi *. radius *. radius

Ambiguous!

Patterns can be nested

type point = float * float
type shape =
| Rectangle of point * point
| Circle of point * float

let area (s:shape) =
match s with
| Rectangle ((tlx,tly), (brx,bry)) -> (brx -. tlx) *. (tly -. bry))
| Circle (_, radius) -> pi *. radius *. radius

Modules

A module groups together a collection of types and values

module IntSet = struct
type elt = int
type t = Leaf | Node of int * t % t
let empty = Leaf
let rec insert (e:elt) (s:t) =
end
module StringSet = struct
type elt = string
type t = Leaf | Node of string * t * t
let empty = Leaf
let rec insert (e:elt) (s:t) =
end
(* IntSet.empty != StringSet.empty =*)

Modules

A module groups together a collection of types and values

module IntSet = struct
type elt = int
type t = Leaf | Node of int * t % t
let empty = Leaf
let rec insert (e:elt) (s:t) =
end
module StringSet = struct
type elt = string
type t = Leaf | Node of string * t * t
let empty = Leaf
let rec insert (e:elt) (s:t) = ...
end
(* IntSet.empty != StringSet.empty =*)

- Each filename.ml file defines a module Filename
- Each filename.mli file defines the interface of Filename
- Some useful modules in the standard library: Int32, Int64, List, Printf, Format

Functors

A functor is a module that is parameterized by another module.

- Set.Make
+ Input: OrderedType module Ord, containing a type t and a function compare for comparing
them
- Output: Data structure representing sets of Ord. t's

- Map.Make
« Input: OrderedType module Ord, containing a type t and a function compare for comparing
them
- Output: Data structure representing maps with ord. t keys

