
COS320: Compiling Techniques

Zak Kincaid

February 20, 2024

Lexing

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

• The lexing (or lexical analysis) phase of a compiler breaks a stream of characters (source
text) into a stream of tokens.

• Whitespace and comments often discarded
• A token is a sequence of characters treated as a unit (a lexeme) along with an token type:

• identifier tokens: x, y, foo, ...
• integer tokens: 0, 1, -14, 512, ...
• if tokens: if
• ...

• Algebraic datatypes are a convenient representation for tokens

type token = IDENT of string
| INT of int
| IF
| ...

// compute absolute value
if (x < 0) {

return -x;
} else {

return x;
}

↓Lexer

IF, LPAREN, IDENT ”x”, LT, INT 0, RPAREN, LBRACE,
RETURN, MINUS, IDENT ”x”, SEMI,
RBRACE, ELSE, LBRACE,
RETURN, IDENT ”x”, SEMI,
RBRACE

Implementing a lexer

• Option 1: write by hand
• Option 2: use a lexer generator

• Write a lexical specification in a domain-specific language
• Lexer generator compiles specification to a lexer (in language of choice)

• Many lexer generators available
• lex, flex, ocamllex, jflex, ...

Formal Languages

• An alphabet Σ is a finite set of symbols (e.g., {0, 1}, ASCII, unicode, tokens).
• A word (or string) over Σ is a finite sequence w = w1w2w3...wn, with each wi ∈ Σ.

• The empty word ϵ is a word over any alphabet
• The set of all words over Σ is typically denoted Σ∗

• E.g., 01001 ∈ {0, 1}∗, embiggen ∈ {a, ..., z}∗

• A language over Σ is a set of words over Σ
• Integer literals form a language over {0, ..., 9,−}
• The keywords of OCaml form a (finite) language over ASCII
• Syntactically-valid Java programs forms an (infinite) language over Unicode

Regular expressions (regex)
• Regular expressions are one mechanism for describing languages

• E.g., 0|(1(0|1)∗) recognizes the language of all binary sequences without leading zeros
• Abstract syntax of regular expressions:

<RegExp> ::= ϵ Empty word

| Σ Letter

| <RegExp><RegExp> Concatenation

| <RegExp>|<RegExp> Alternative

| <RegExp>∗ Repetition

• Meaning of regular expressions:
L(ϵ) = {ϵ}
L(a) = {a}

L(R1R2) = {uv : u ∈ L(R1) ∧ v ∈ L(R2)}
L(R1|R2) = L(R1) ∪ L(R2)

L(R∗) = {ϵ} ∪ L(R) ∪ L(RR) ∪ L(RRR) ∪ ...

Regular expressions (regex)
• Regular expressions are one mechanism for describing languages

• E.g., 0|(1(0|1)∗) recognizes the language of all binary sequences without leading zeros
• Abstract syntax of regular expressions:

<RegExp> ::= ϵ Empty word

| Σ Letter

| <RegExp><RegExp> Concatenation

| <RegExp>|<RegExp> Alternative

| <RegExp>∗ Repetition

• Meaning of regular expressions:
L(ϵ) = {ϵ}
L(a) = {a}

L(R1R2) = {uv : u ∈ L(R1) ∧ v ∈ L(R2)}
L(R1|R2) = L(R1) ∪ L(R2)

L(R∗) = {ϵ} ∪ L(R) ∪ L(RR) ∪ L(RRR) ∪ ...

ocamllex regex concrete syntax

• ’a’: letter
• “abc”: string (equiv. ’a”b”c’)
• R+: one or more repetitions of R (equiv. RR*)
• R?: zero or one R (equiv. R|ϵ)
• [’a’-’z’]: character range (equiv. ’a’|’b’|...|’z’)
• R as x: bind string matched by R to variable x

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a
character stream w.r.t. that specification
Example lexical specification:

token type︷ ︸︸ ︷
identifier =

pattern︷ ︸︸ ︷
[a − zA − Z][a − zA − Z0− 9]∗

integer = [1− 9][0− 9]∗

plus = +

• “foo+42+bar” → identifier︸ ︷︷ ︸
token type

“foo”︸ ︷︷ ︸
lexeme

, plus “+”, integer “42”, plus “+”, identifier “bar”

• Typically, lexical spec associates an action to each token type, which is code that is
evaluted on the lexeme (often: produce a token value)

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a
character stream w.r.t. that specification
Example lexical specification:

token type︷ ︸︸ ︷
identifier =

pattern︷ ︸︸ ︷
[a − zA − Z][a − zA − Z0− 9]∗

integer = [1− 9][0− 9]∗

plus = +

• “foo+42+bar” → identifier︸ ︷︷ ︸
token type

“foo”︸ ︷︷ ︸
lexeme

, plus “+”, integer “42”, plus “+”, identifier “bar”

• Typically, lexical spec associates an action to each token type, which is code that is
evaluted on the lexeme (often: produce a token value)

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a
character stream w.r.t. that specification
Example lexical specification:

token type︷ ︸︸ ︷
identifier =

pattern︷ ︸︸ ︷
[a − zA − Z][a − zA − Z0− 9]∗

integer = [1− 9][0− 9]∗

plus = +

• “foo+42+bar” → identifier︸ ︷︷ ︸
token type

“foo”︸ ︷︷ ︸
lexeme

, plus “+”, integer “42”, plus “+”, identifier “bar”

• Typically, lexical spec associates an action to each token type, which is code that is
evaluted on the lexeme (often: produce a token value)

Disambiguation

• May be more than one way to lex a string:

IF = if

IDENT = [a-zA-Z][a-zA-Z0-9]∗

INT = [1-9][0-9]∗

LT = <

· · ·
• Input string ifx<10: IDENT “ifx”, LT, INT 10 or IF, IDENT “x”, LT, INT 10 ?
• Input string if x<9: IF, IDENT “x”, LT, INT 9 or IDENT “if”, IDENT “x”, LT, INT 9 ?

• Two rules sufficient to disambiguate (remember these!)
1 The lexer is greedy: always prefer longest match
2 Order matters: prefer earlier patterns

Disambiguation

• May be more than one way to lex a string:

IF = if

IDENT = [a-zA-Z][a-zA-Z0-9]∗

INT = [1-9][0-9]∗

LT = <

· · ·
• Input string ifx<10: IDENT “ifx”, LT, INT 10 or IF, IDENT “x”, LT, INT 10 ?
• Input string if x<9: IF, IDENT “x”, LT, INT 9 or IDENT “if”, IDENT “x”, LT, INT 9 ?

• Two rules sufficient to disambiguate (remember these!)
1 The lexer is greedy: always prefer longest match
2 Order matters: prefer earlier patterns

How do lexer generators work?

Lexer generator pipeline

• Lexical specification is compiled to a deterministic finite automaton (DFA), which can be
executed efficiently

• Typical pipeline: lexical specification → nondeterministic FA → DFA
• Kleene’s theorem: regular expressions, NFAs, and DFAs describe the same class of

languages
• A language is regular if it is accepted by a regular expression (equiv., NFA, DFA).

Deterministic finite automata (DFA)

s0start sf sr

a b a

b
b a

A deterministic finite automaton (DFA) A = (Q,Σ, δ, s,F) consists of
• Q: finite set of states
• Σ: finite alphabet
• δ : Q × Σ → Q: transition function

• Every state has exactly one outgoing edge per letter

• s ∈ Q: initial state
• F ⊆ Q: final (accepting) states

DFA accepts a string w = w1...wn ∈ Σ∗ iff δ(...δ(δ(s,w1),w2), ...,wn) ∈ F.

Non-deterministic finite automata

s0start s1 s2 sf
a

a

a ϵ

b

A non-deterministic finite automaton (NFA) A = (Q,Σ,∆, s,F) generalization of a DFA, where
• ∆ ⊆ Q × (Σ ∪ {ϵ})× Q: transition relation

• A state can have more than one outgoing edge for a given letter
• A state can have no outgoing edges for a given letter
• A state can have ϵ-transitions (read no input, but change state)

NFA accepts a string w = w1...wn ∈ Σ∗ iff there exists a w-labeled path from s to an final state
(i.e., there is some sequence (q0, u1, q1), (q1, u2, q2), ..., (qm−1, um, qm) with q0 = s, qm ∈ F, and
u1u2...um = w.

Non-deterministic finite automata

s0start s1 s2 sf
a

a

a ϵ

b

A non-deterministic finite automaton (NFA) A = (Q,Σ,∆, s,F) generalization of a DFA, where
• ∆ ⊆ Q × (Σ ∪ {ϵ})× Q: transition relation

• A state can have more than one outgoing edge for a given letter
• A state can have no outgoing edges for a given letter
• A state can have ϵ-transitions (read no input, but change state)

NFA accepts a string w = w1...wn ∈ Σ∗ iff there exists a w-labeled path from s to an final state
(i.e., there is some sequence (q0, u1, q1), (q1, u2, q2), ..., (qm−1, um, qm) with q0 = s, qm ∈ F, and
u1u2...um = w.

Regex → NFA

Case: ϵ (empty word)

s0start sf
ϵ

Regex → NFA

Case: a (letter)

s0start sf
a

Regex → NFA

Case: R1R2 (concatenation)

s0start sf s′0start s′f

R1 R2

ϵ

Regex → NFA

Case: R1R2 (concatenation)

s0start sf s′0 s′f

R1 R2

ϵ

Regex → NFA

Case: R1|R2 (alternative)

s0start sf

s′0start s′f

sstart t
ϵ

ϵ

ϵ

ϵ

R1

R2

Regex → NFA

Case: R1|R2 (alternative)

s0 sf

s′0 s′f

sstart t
ϵ

ϵ

ϵ

ϵ

R1

R2

Regex → NFA

Case: R∗ (iteration)

s0start sf

sstart t

ϵ ϵ

ϵ

ϵ

Regex → NFA

Case: R∗ (iteration)

s0 sf

sstart t

ϵ ϵ

ϵ

ϵ

NFA → DFA

• For any NFA, there is a DFA that recognizes the same language
• Intuition: the DFA simulates all possible paths of the NFA simultaneously

• There is an unbounded number of paths but we only care about the “end state” of each path,
not its history

• States of the DFA track the set of possible states the NFA could be in
• DFA accepts when some path accepts

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b
a

b

s2a
s2, sfa

s1

b a

b a

b

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b

a

b

s2a
s2, sfa

s1

b a

b a

b

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b
a

b

s2a
s2, sfa

s1

b a

b a

b

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b
a

b

s2a

s2, sfa

s1

b a

b a

b

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b
a

b

s2a

s2, sfa

s1

b a

b a

b

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b
a

b

s2a

s2, sfa

s1

b

a

b a

b

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b
a

b

s2a

s2, sfa

s1

b a

b a

b

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b
a

b

s2a

s2, sfa

s1

b a

b

a

b

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b
a

b

s2a

s2, sfa

s1

b a

b a

b

NFA → DFA

s0start s1 s2 sf
a

a

a ϵ

b

s0start

s1, sf

∅

a

b
a

b

s2a

s2, sfa

s1

b a

b a

b

NFA → DFA, formally

• Have: NFA A = (Q,Σ, δ, s,F). Want: DFA A′ = (Q′,Σ, δ′, s′,F′) that accepts same
language.

• For any S ⊆ Q, define the ϵ-closure of S to be the set of states reachable from S by ϵ
transitions (incl. S)
ϵ-cl(S) = smallest set that contains S and such that ∀(q, ϵ, q′) ∈ ∆, q ∈ S ⇒ q′ ∈ S

• Construct DFA as follows:
• Q′ = set of all ϵ-closed subsets of Q
• δ′(S, a) = ϵ-closure of{q2 : ∃q1 ∈ S.(q1, a, q2) ∈ ∆}
• s′ = ϵ-closure of {s}
• F′ = {S ∈ Q′ : S ∩ F ̸= ∅}

• Crucial optimization: only construct states that are reachable from s′

• Less crucial, still important: minimize DFA (Hopcroft’s algorithm, O(n log n))

NFA → DFA, formally

• Have: NFA A = (Q,Σ, δ, s,F). Want: DFA A′ = (Q′,Σ, δ′, s′,F′) that accepts same
language.

• For any S ⊆ Q, define the ϵ-closure of S to be the set of states reachable from S by ϵ
transitions (incl. S)
ϵ-cl(S) = smallest set that contains S and such that ∀(q, ϵ, q′) ∈ ∆, q ∈ S ⇒ q′ ∈ S

• Construct DFA as follows:
• Q′ = set of all ϵ-closed subsets of Q
• δ′(S, a) = ϵ-closure of{q2 : ∃q1 ∈ S.(q1, a, q2) ∈ ∆}
• s′ = ϵ-closure of {s}
• F′ = {S ∈ Q′ : S ∩ F ̸= ∅}

• Crucial optimization: only construct states that are reachable from s′

• Less crucial, still important: minimize DFA (Hopcroft’s algorithm, O(n log n))

NFA → DFA, formally

• Have: NFA A = (Q,Σ, δ, s,F). Want: DFA A′ = (Q′,Σ, δ′, s′,F′) that accepts same
language.

• For any S ⊆ Q, define the ϵ-closure of S to be the set of states reachable from S by ϵ
transitions (incl. S)
ϵ-cl(S) = smallest set that contains S and such that ∀(q, ϵ, q′) ∈ ∆, q ∈ S ⇒ q′ ∈ S

• Construct DFA as follows:
• Q′ = set of all ϵ-closed subsets of Q
• δ′(S, a) = ϵ-closure of{q2 : ∃q1 ∈ S.(q1, a, q2) ∈ ∆}
• s′ = ϵ-closure of {s}
• F′ = {S ∈ Q′ : S ∩ F ̸= ∅}

• Crucial optimization: only construct states that are reachable from s′

• Less crucial, still important: minimize DFA (Hopcroft’s algorithm, O(n log n))

NFA → DFA, formally

• Have: NFA A = (Q,Σ, δ, s,F). Want: DFA A′ = (Q′,Σ, δ′, s′,F′) that accepts same
language.

• For any S ⊆ Q, define the ϵ-closure of S to be the set of states reachable from S by ϵ
transitions (incl. S)
ϵ-cl(S) = smallest set that contains S and such that ∀(q, ϵ, q′) ∈ ∆, q ∈ S ⇒ q′ ∈ S

• Construct DFA as follows:
• Q′ = set of all ϵ-closed subsets of Q
• δ′(S, a) = ϵ-closure of{q2 : ∃q1 ∈ S.(q1, a, q2) ∈ ∆}
• s′ = ϵ-closure of {s}
• F′ = {S ∈ Q′ : S ∩ F ̸= ∅}

• Crucial optimization: only construct states that are reachable from s′

• Less crucial, still important: minimize DFA (Hopcroft’s algorithm, O(n log n))

Lexical specification → String classifier

• Want: partial function match mapping strings to token types
• match(s) = highest-priority token type whose pattern matches s (undef otherwise)

• Process:
1 Convert each pattern to an NFA. Label accepting states w/ token types.
2 Take the union of all NFAs
3 Convert to DFA

• States of the DFA labeled with sets of token types.
• Take highest priority.

identifier = [a − zA − Z][a − zA − Z0− 9]∗

integer = [1− 9][0− 9]∗

float = ([1− 9][0− 9]∗|0).[0− 9]+

identifier i0 i1
[a − zA − Z]

[a − zA − Z0− 9]

identifier

integer n0 n1

[1− 9]

[0− 9]

int

float f0

f1

f′1

f2

[1− 9]

0

[0− 9]

.

.

[0− 9]

float

{i0,n0, f0}

{i1}

{f′1}

{n1, f1}

[a − zA − Z]

0

[1− 9]

identifier

int

[a − zA − Z0− 9]

.

{f2} float

.

[0− 9]

[0− 9]

{i0,n0, f0}

{i1}

{f′1}

{n1, f1}

[a − zA − Z]

0

[1− 9]

identifier

int

[a − zA − Z0− 9]

. {f2} float

.

[0− 9]

[0− 9]

{i0,n0, f0}

{i1}

{f′1}

{n1, f1}

[a − zA − Z]

0

[1− 9]

identifier

int

[a − zA − Z0− 9]

. {f2} float

.

[0− 9]

[0− 9]

{i0,n0, f0}

{i1}

{f′1}

{n1, f1}

[a − zA − Z]

0

[1− 9]

identifier

int

[a − zA − Z0− 9]

. {f2} float

.

[0− 9]

[0− 9]

{i0,n0, f0}

{i1}

{f′1}

{n1, f1}

[a − zA − Z]

0

[1− 9]

identifier

int

[a − zA − Z0− 9]

. {f2} float

.

[0− 9]

[0− 9]

{i0,n0, f0}

{i1}

{f′1}

{n1, f1}

[a − zA − Z]

0

[1− 9]

identifier

int

[a − zA − Z0− 9]

. {f2} float

.

[0− 9]

[0− 9]

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

