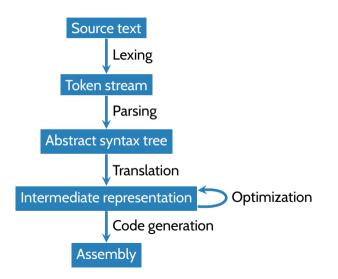
COS320: Compiling Techniques

Zak Kincaid

February 20, 2024

Lexing

Compiler phases (simplified)



- The *lexing* (or *lexical analysis*) phase of a compiler breaks a stream of characters (source text) into a stream of *tokens*.
 - Whitespace and comments often discarded
- A *token* is a sequence of characters treated as a unit (a *lexeme*) along with an *token type*:
 - *identifier tokens*: x, y, foo, ...
 - integer tokens: 0, 1, -14, 512, ...
 - *if tokens*: if
 - ...
- Algebraic datatypes are a convenient representation for tokens

```
// compute absolute value
if (x < 0) {
    return -x;
} else {
    return x;
}</pre>
```

↓Lexer

IF, LPAREN, IDENT "x", LT, INT 0, RPAREN, LBRACE, RETURN, MINUS, IDENT "x", SEMI, RBRACE, ELSE, LBRACE, RETURN, IDENT "x", SEMI, RBRACE

Implementing a lexer

- Option 1: write by hand
- Option 2: use a lexer generator
 - Write a lexical specification in a domain-specific language
 - Lexer generator compiles specification to a lexer (in language of choice)
- Many lexer generators available
 - lex, flex, ocamllex, jflex, ...

Formal Languages

- An *alphabet* Σ is a finite set of symbols (e.g., $\{0, 1\}$, ASCII, unicode, tokens).
- A word (or string) over Σ is a finite sequence $w = w_1 w_2 w_3 \dots w_n$, with each $w_i \in \Sigma$.
 - The empty word ϵ is a word over any alphabet
 - The set of all words over Σ is typically denoted Σ^*
 - E.g., $01001 \in \{0, 1\}^*$, *embiggen* $\in \{a, ..., z\}^*$
- A language over Σ is a set of words over Σ
 - Integer literals form a language over $\{0, ..., 9, -\}$
 - The keywords of OCaml form a (finite) language over ASCII
 - Syntactically-valid Java programs forms an (infinite) language over Unicode

Regular expressions (regex)

- Regular expressions are one mechanism for describing languages
 - E.g., 0|(1(0|1)*) recognizes the language of all binary sequences without leading zeros
- Abstract syntax of regular expressions:

```
Empty word
\langle \text{RegExp} \rangle ::= \epsilon
                 Σ
                                                              Concatenation
                 <RegExp><RegExp>
                 <RegExp>|<RegExp>
                                                                   Alternative
                 <RegExp>*
                                                                   Repetition
```

l etter

Regular expressions (regex)

- Regular expressions are one mechanism for describing languages
 - E.g., $0|(1(0|1)^*)$ recognizes the language of all binary sequences without leading zeros
- Abstract syntax of regular expressions:

```
 \begin{array}{c|cccc} < & \mathsf{Empty word} \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

• Meaning of regular expressions:

$$\mathcal{L}(\epsilon) = \{\epsilon\}$$

$$\mathcal{L}(a) = \{a\}$$

$$\mathcal{L}(R_1R_2) = \{uv : u \in \mathcal{L}(R_1) \land v \in \mathcal{L}(R_2)\}$$

$$\mathcal{L}(R_1|R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)$$

$$\mathcal{L}(R^*) = \{\epsilon\} \cup \mathcal{L}(R) \cup \mathcal{L}(RR) \cup \mathcal{L}(RRR) \cup ...$$

ocamllex regex concrete syntax

- 'a': letter
- "abc": string (equiv. 'a"b"c')
- R+: one or more repetitions of R (equiv. RR*)
- R?: zero or one R (equiv. $R | \epsilon$)
- ['a'-'z']: character range (equiv. 'a'|'b'|...|'z')
- R as x: bind string matched by R to variable x

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification Example lexical specification:

$$\overbrace{identifier}^{token type} = \overbrace{[a - zA - Z][a - zA - Z0 - 9]^*}^{pattern}$$
$$integer = [1 - 9][0 - 9]^*$$
$$plus = +$$

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification Example lexical specification:

token type
identifier =
$$\overline{[a - zA - Z][a - zA - Z0 - 9]^*}$$

integer = $[1 - 9][0 - 9]^*$
plus = +

"foo+42+bar" → identifier "foo", plus "+", integer "42", plus "+", identifier "bar"
 token type lexeme

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification Example lexical specification:

token type
identifier =
$$\overline{[a - zA - Z][a - zA - Z0 - 9]^*}$$

integer = $[1 - 9][0 - 9]^*$
plus = +

"foo+42+bar" → identifier "foo", plus "+", integer "42", plus "+", identifier "bar"
 token type lexeme

• Typically, lexical spec associates an *action* to each token type, which is code that is evaluted on the lexeme (often: produce a token value)

Disambiguation

• May be more than one way to lex a string:

Disambiguation

May be more than one way to lex a string:

$$IF = if$$

$$IDENT = [a-zA-Z][a-zA-Z0-9]^*$$

$$INT = [1-9][0-9]^*$$

$$LT = <$$
...
IDENT "ifx", LT, INT 10 OF IF, IDENT "x", LT, INT 10 ?

- Input string if x<9: IF, IDENT "x", LT, INT 9 or IDENT "if", IDENT "x", LT, INT 9 ?
- Two rules sufficient to disambiguate (remember these!)
 - 1 The lexer is greedy: always prefer longest match
 - **2** Order matters: prefer earlier patterns

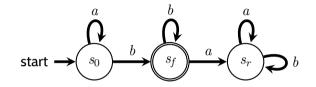
Input string if x<10:</p>

How do lexer generators work?

Lexer generator pipeline

- Lexical specification is compiled to a *deterministic finite automaton* (DFA), which can be executed efficiently
- Typical pipeline: lexical specification \rightarrow *non*deterministic FA \rightarrow DFA
- Kleene's theorem: regular expressions, NFAs, and DFAs describe the same class of languages
 - A language is *regular* if it is accepted by a regular expression (equiv., NFA, DFA).

Deterministic finite automata (DFA)

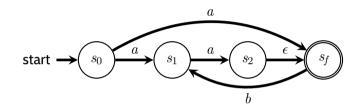


A deterministic finite automaton (DFA) $A = (Q, \Sigma, \delta, s, F)$ consists of

- Q: finite set of states
- Σ : finite alphabet
- $\delta: Q \times \Sigma \rightarrow Q$: transition function
 - Every state has exactly one outgoing edge per letter
- $s \in Q$: initial state
- $F \subseteq Q$: final (accepting) states

DFA accepts a string $w = w_1...w_n \in \Sigma^*$ iff $\delta(...\delta(\delta(s, w_1), w_2), ..., w_n) \in F$.

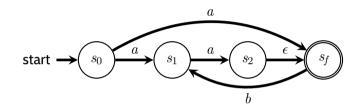
Non-deterministic finite automata



A non-deterministic finite automaton (NFA) $A = (Q, \Sigma, \Delta, s, F)$ generalization of a DFA, where

- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$: transition *relation*
 - A state can have more than one outgoing edge for a given letter
 - A state can have no outgoing edges for a given letter
 - A state can have ε-transitions (read no input, but change state)

Non-deterministic finite automata

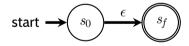


A non-deterministic finite automaton (NFA) $A = (Q, \Sigma, \Delta, s, F)$ generalization of a DFA, where

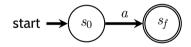
- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$: transition *relation*
 - A state can have more than one outgoing edge for a given letter
 - A state can have no outgoing edges for a given letter
 - A state can have *e*-transitions (read no input, but change state)

NFA accepts a string $w = w_1...w_n \in \Sigma^*$ iff there exists a *w*-labeled path from *s* to an final state (i.e., there is some sequence $(q_0, u_1, q_1), (q_1, u_2, q_2), ..., (q_{m-1}, u_m, q_m)$ with $q_0 = s, q_m \in F$, and $u_1u_2...u_m = w$.

Case: ϵ (empty word)

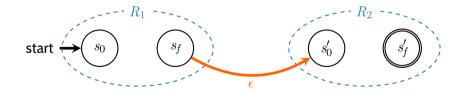


Case: *a* (letter)

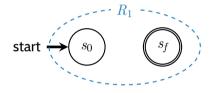


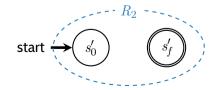
Case: R_1R_2 (concatenation)

Case: R_1R_2 (concatenation)

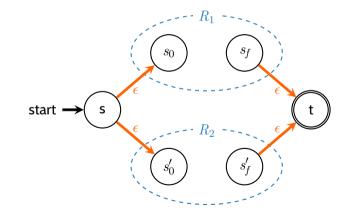


Case: $R_1|R_2$ (alternative)

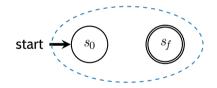




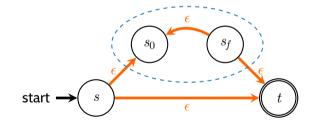
Case: $R_1|R_2$ (alternative)



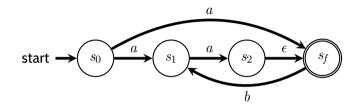
Case: R^* (iteration)

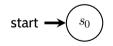


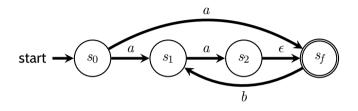
Case: R^* (iteration)

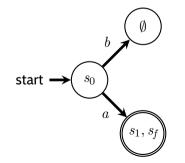


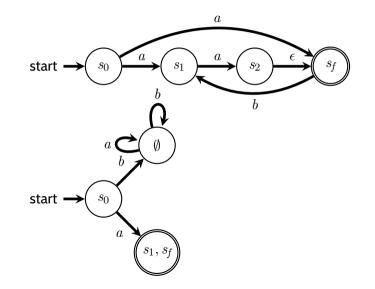
- For any NFA, there is a DFA that recognizes the same language
- Intuition: the DFA simulates all possible paths of the NFA simultaneously
 - There is an unbounded number of paths *but* we only care about the "end state" of each path, not its history
 - States of the DFA track the set of possible states the NFA could be in
 - DFA accepts when some path accepts

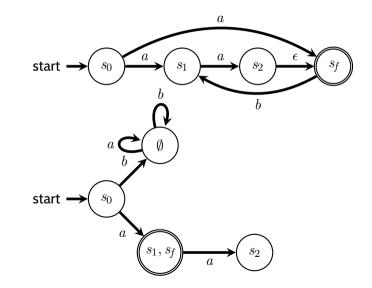


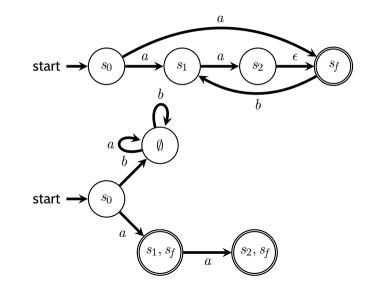


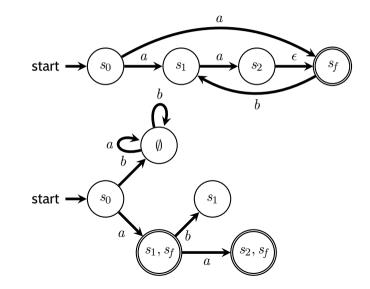


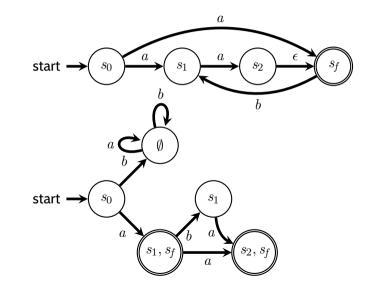




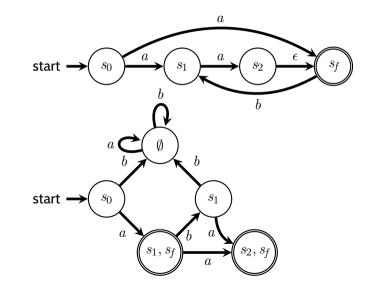




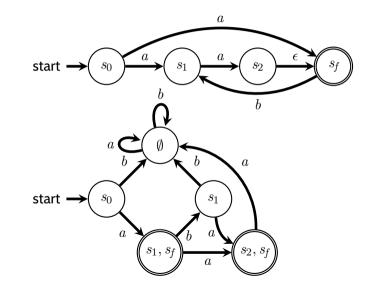




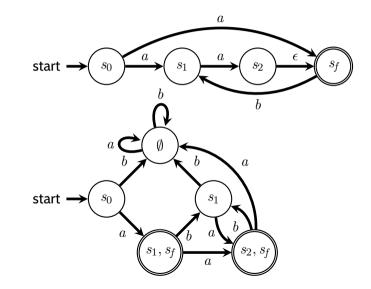
$\text{NFA} \rightarrow \text{DFA}$



$\text{NFA} \rightarrow \text{DFA}$



$\text{NFA} \rightarrow \text{DFA}$



$\rm NFA \rightarrow \rm DFA,$ formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ -closure of S to be the set of states reachable from S by ϵ transitions (incl. S)

$\rm NFA \rightarrow \rm DFA,$ formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ -closure of S to be the set of states reachable from S by ϵ transitions (incl. S)

- Construct DFA as follows:
 - $Q' = \text{set of all } \epsilon \text{-closed subsets of } Q$
 - $\delta'(S, a) = \epsilon$ -closure of $\{q_2 : \exists q_1 \in S.(q_1, a, q_2) \in \Delta\}$
 - $s' = \epsilon$ -closure of $\{s\}$
 - $F' = \{S \in Q' : S \cap F \neq \emptyset\}$

$\rm NFA \rightarrow \rm DFA,$ formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ -closure of S to be the set of states reachable from S by ϵ transitions (incl. S)

- Construct DFA as follows:
 - $Q' = \text{set of all } \epsilon \text{-closed subsets of } Q$
 - $\delta'(S, a) = \epsilon$ -closure of $\{q_2 : \exists q_1 \in S.(q_1, a, q_2) \in \Delta\}$
 - $s' = \epsilon$ -closure of $\{s\}$
 - $F' = \{S \in Q' : S \cap F \neq \emptyset\}$
- Crucial optimization: only construct states that are reachable from s'

NFA \rightarrow DFA, formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ -closure of S to be the set of states reachable from S by ϵ transitions (incl. S)

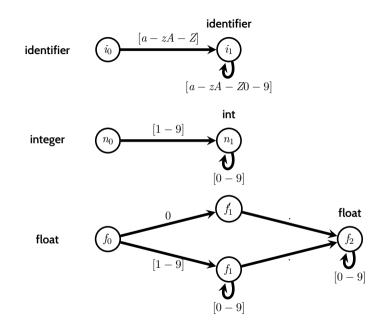
- Construct DFA as follows:
 - $Q' = \text{set of all } \epsilon \text{-closed subsets of } Q$
 - $\delta'(S, a) = \epsilon$ -closure of $\{q_2 : \exists q_1 \in S.(q_1, a, q_2) \in \Delta\}$
 - $s' = \epsilon$ -closure of $\{s\}$
 - $F' = \{S \in Q' : S \cap F \neq \emptyset\}$
- Crucial optimization: only construct states that are reachable from s'
- Less crucial, still important: minimize DFA (Hopcroft's algorithm, $O(n \log n)$)

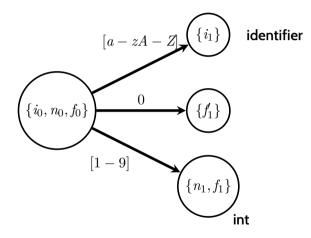
Lexical specification \rightarrow String classifier

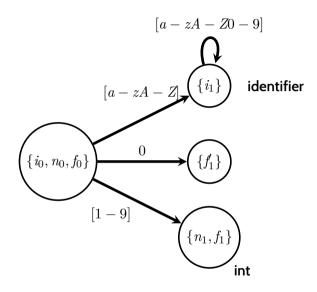
- Want: partial function match mapping strings to token types
 - *match*(*s*) = highest-priority token type whose pattern matches *s* (undef otherwise)
- Process:
 - Convert each pattern to an NFA. Label accepting states w/ token types.
 - 2 Take the union of all NFAs
 - 3 Convert to DFA
 - States of the DFA labeled with sets of token types.
 - Take highest priority.

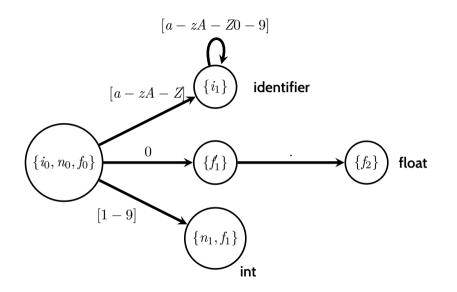
identifier =
$$[a - zA - Z][a - zA - Z0 - 9]^*$$

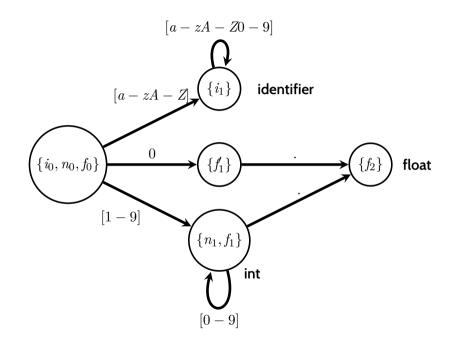
integer = $[1 - 9][0 - 9]^*$
float = $([1 - 9][0 - 9]^*|0).[0 - 9]^+$

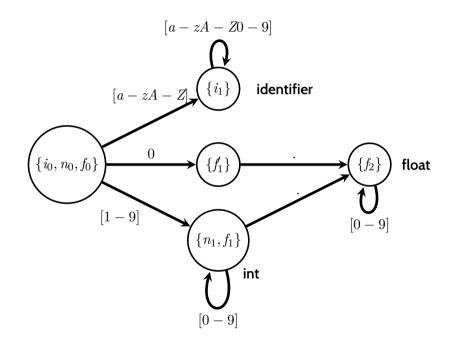












Compiler phases (simplified)

