
COS320: Compiling Techniques

Zak Kincaid

February 8, 2024

• Reminder: HW1 due Monday Feb 12
• Bonus OCaml office hours 4pm Friday Feb 9, in CS 003

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

Last time: let-based IR

Each instruction has at most three operands (“three-address code”)

<instr> :=let <uid> = <operand> <op> <operand>; Instructions
| load <uid> = <var>;

| store <var> = <operand>;

| return <operand>;

<operand> :=<uid> | <integer> Operands
<op> :=+ | * Operations

Control Flow

Concrete syntax

<instr> :=let <uid> = <operand> <op> <operand>; Instructions
| load <uid> = <var>;

| store <var> = <operand>;

<operand> :=<uid> | <integer> Operands
<op> :=+ | * Operations

<terminator> ::=br <label> Branch
| cbr <cc> <operand> <label> <label> Conditional branch
| return <operand> Return

<cc> ::=EqZ | LeZ | LtZ
<block> ::=<instr><block> | <terminator>

<program> ::=<program><label>: <block> | <block>

Control Flow Graphs (CFG)

int sum_upto(int n) {
int sum = 0;
while (n > 0) {

sum += n;
n--;

}
return sum;

}

store sum = 0

br loop

load tmp1 = n

loop

let tmp2 = 0 - n

cbr ltz tmp2 body exit

load tmp4 = sum

body

load tmp5 = n

let tmp6 = tmp4 + tmp6

store sum = tmp6

load tmp7 = n

let tmp8 = tmp7 - 1

store n = tmp8

br loop

load tmp9 = sum
exit

return tmp9

T

F

Control Flow Graphs (CFG)

int sum_upto(int n) {
int sum = 0;
while (n > 0) {

sum += n;
n--;

}
return sum;

}

store sum = 0

br loop

load tmp1 = n
let tmp2 = 0 - n

cbr ltz tmp2 body exit

loop

load tmp4 = sum
load tmp5 = n
let tmp6 = tmp4 + tmp6
store sum = tmp6
load tmp7 = n
let tmp8 = tmp7 - 1
store n = tmp8

br loop

body

load tmp9 = sum

return tmp9

exit
T

F

• Control flow graphs are a graphical representation of the control flow through a procedure
• A basic block is a sequence of instructions that

1 Starts with an entry, which is named by a label
2 Ends with a control-flow instruction (br, cbr, or return)

• the terminator of the basic block

3 Contains no interior labels or control flow instructions
• A control flow graph (CFG) for a procedure P is a directed, rooted graph where

• The nodes are basic blocks of P
• There is an edge BBi → BBj iff BBj may execute immediately after BBi
• There is a distinguished entry block where the execution of the procedure begins, which has

no incoming edges

• CFG models all program executions
• Every execution corresponds to a path in the CFG, starting at entry

• Path = sequence of basic blocks B1, ...,Bn such that for each i, there is an edge from Bi to Bi+1

• Simple path = path without repeated basic blocks
• (But not vice-versa!)

• Graph structure used extensively in optimization (data flow analysis, loop recognition, ...)
• Simple application: dead code elimination

1 Depth-first traversal of the CFG
2 Any unvisited node is removed

• CFG models all program executions
• Every execution corresponds to a path in the CFG, starting at entry

• Path = sequence of basic blocks B1, ...,Bn such that for each i, there is an edge from Bi to Bi+1

• Simple path = path without repeated basic blocks
• (But not vice-versa!)

• Graph structure used extensively in optimization (data flow analysis, loop recognition, ...)
• Simple application: dead code elimination

1 Depth-first traversal of the CFG
2 Any unvisited node is removed

Why basic blocks?

• Control flow graphs may be defined at the instruction-level rather than basic-block level
• However, there are good reasons for using basic blocks

• More compact
• Some optimization passes (“local” optimizations) operate @ basic block level

• E.g., the implementation of redundant load elimination in let3.ml

Constructing a CFG

• “Forwards“ algorithm:
• Traverse statements in IR from top to bottom

• Find leaders: first statement & first statement following a label
• Basic block = leader up to (but not including) next leader

• Alternately, traverse IR from bottom to top, starting a new basic blocks for each
terminator and finishing at label (build_cfg in let3.ml)

• (Assumes every label has a corresponding terminator. Does not assume every terminator has
a corresponding label—implicitly eliminated dead code)

• Can also construct CFG directly from AST

Generating code from a CFG

• Simple strategy: terminator always compiles to return / jump / conditional jump
• “Fall-through” semantics of assembly blocks is never used

• More efficient strategy: elide jumps by ordering blocks appropriately
• A covering set of traces is a set of traces such that

• Each trace is a simple path (loop free)
• Each basic block belongs to a trace

• Any covering set of traces corresponds to a (partial) ordering of blocks, which may elide some
jumps.

Generating code from a CFG

• Simple strategy: terminator always compiles to return / jump / conditional jump
• “Fall-through” semantics of assembly blocks is never used

• More efficient strategy: elide jumps by ordering blocks appropriately
• A covering set of traces is a set of traces such that

• Each trace is a simple path (loop free)
• Each basic block belongs to a trace

• Any covering set of traces corresponds to a (partial) ordering of blocks, which may elide some
jumps.

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

