¥ C0S226

Precept 4 Spring 24

Precept Outline
+ Review of Lectures 7 and 8:

- Quicksort

- Heaps and Priority Queues

Relevant Book Sections
+ Book chapters: 2.3, 2.4 and 2.5

A. Review: Quicksort + Heaps

Your preceptor will briefly review key points of this week's lectures. Here are some images representing examples
they will show you, for partition, quicksort and quickselect.

8627

M462?153

w132 4 o]

1-:32 =65
i i
2'3 5 6

1534 pmw4623153
8 4327156
R

?6 4321756

’gl < pivot > pivot

7 132 4 756

~ 86271534
462%153 g
132 475%

Vv

k 32

Runtime of Priority Queue

Consider the following code which uses a binary-heap based minimum priority queue (MinPQ). Assume that
n > k, and that al] is an array containing arbitrary integers.

1 void foo(int k, int[] a) {

2

4

© N o un

9
10
11

MinPQ<Integer> pg = new MinPQ
int n = a.length;

for (int i = 0; i < n; i++) {
pg.insert(alil);
if (pqg.size() > k) pq.delMi
}

for (int i = 0; i < k; i++)

<Integer>();

nQ;

System.out.println(pg.delMin());

12}



Describe what the code outputs in terms of the array a[] and the parameter k.

What is the order of growth of the running time of the code as a function of both n and k?

Suppose we were to remove line 7. What would the code’s output and order of growth be?

C. Designing a Data Type Using a Priority Queue
This problem was taken and slightly adapted from the Fall 2019 Midterm exam

Design a data type to implement a double-ended priority queue. The data type must support inserting a key,
deleting a smallest key, and deleting a largest key. (If there are ties for the smallest or largest key, you may
choose among them arbitrarily.)

To do so, create a MinMaxPQ data type that implements the following API:

public class MinMaxPQ<Key extends Comparable<Key>> {

MinMaxPQ() // create an empty priority queue
void insert(Key x) // add x to the priority queue

Key min() // return a smallest key

Key max() // return a largest key

Key delMin() // return and remove a smallest key
Key delMax() // return and remove a largest key



Here are the performance requirements:
* The insert(), delMin(), and delMax() must take time proportional to log n or better in the worst case, where
n is the number of keys in the priority queue.

« Themin() and max() methods must take constant time in the worst case.

In your answer mention: the instance variables you'll use, your implementation of min()/max(), your implemen-
tation of insert(x) and your implementation of delMin()/delMax().

Notes: To describe your solution, use either English prose or Java code (or a combination of the two). If your solution uses
an algorithm or data structure from the course, do not reinvent it; simply describe how you are applying it.




	Review: Quicksort + Heaps
	Runtime of Priority Queue
	Designing a Data Type Using a Priority Queue

