¥ C0S226 Precept 3 Spring 24

Precept Outline Relevant Book Sections
* Review of Lectures 5 and 6: + Book chapters: 2.1, 2.2 and 2.5

- Comparators and Comparables
- Elementary sorts
- Mergesort

A. Review: Elementary Sorts + Mergesort

Your preceptor will briefly review key points of this week’s lectures.

B. Comparable & Comparator

Solve the exercises in the “Comparable & Comparator” Ed lesson.

C. Mergesort

Part 1: Three-way Mergesort

(Two-way) Mergesort is quite a simple algorithm to describe: to sort n elements, divide the array in half, (recur-
sively) sort each then merge the two halves together. In this exercise, we will study a variant of it: the three-way
Mergesort, we divide an array of length n into 3 subarrays of length %, sort each of them and then perform a
3-way merge.

Given 3 sorted subarrays of size %, how many comparisons are needed (in the worst case) to merge them to a
sorted array of size n? Provide your answer in tilde notation.

What is the order of growth of the number of compares in 3-way Mergesort as a function of the array size n?
(Here we're counting the total number, including all recursive calls.)



https://edstem.org/us/courses/55258/lessons/91027

Given a choice, would you choose 3-way or 2-way mergesort? Justify your answer.

Challenge Problem (optional): In an array h of n numbers, an inversion is a pair of elements that isn't sorted;
that is, two indices i and j such thati < j and h[i] > hlj].

Describe an algorithm to compute the total number of inversions of an array of length n in time ©(nlogn). Hint:
think about how you can modify the merge sort algorithm to achieve this.

D. Assignment Overview: Autocomplete

Your preceptor will introduce and give an overview of your third assignment. Please don't hesitate to ask ques-
tions!

Summary of the assignment.

« Implement a Term class, which stores a word (as a string) and a numeric weight, and also implements compara-
tors for comparing terms in natural order, in decreasing order of weight, and lexicographically based on the
first r characters.

+ Create a data type Autocomplete that initializes with given arrays of terms and weights, and supports methods
to return the weight of a term, the top matching term, and the top k£ matching terms in descending order of
weight.

* Implement a BinarySearchDeluxe class, which should use binary search to find the first and last index of a given
key in a sorted array (these are important primitives to the Autocomplete class).

+ Determine the theoretical runtime of the main methods to implement, and report it is using big Theta notation.
This will be done in readme. txt.


https://www.cs.princeton.edu/courses/archive/spring24/cos226/assignments/autocomplete/specification.php

	Review: Elementary Sorts + Mergesort
	Comparable & Comparator
	Mergesort
	Three-way Mergesort

	Assignment Overview: Autocomplete

