
COS226 Precept 10 Spring ’24
Precept Outline• Review of Lectures 21 and 22:
– Randomness
– Multiplicative Weights
– Decision Stumps and Boosting

A. Review: Randomness and Multiplicative Weights

Your preceptor will briefly review key points of this week’s lectures.

B. Weak Learners and Boosting

In this problem, we will work through a small example of the weak learner you will be required to implement inthe final programming assignment.
A decision stump is a very simple kind of binary classifier for points in k-dimensional space. Its decision dependson three values:
• the dimension predictor dp, an integer between 0 and k − 1;
• the value predictor vp, an integer; and
• the sign predictor sp ∈ {0, 1}.
With these three values, the decision stump outputs a prediction for the label (i.e., either 0 or 1) of a sample point
x = (x0, x1, . . . , xk−1) as follows:
• if sp = 0, output 0 if xdp ≤ vp (and output 1 if xdp > vp);
• if sp = 1, output 1 if xdp ≤ vp (and output 0 if xdp > vp).
(In the following examples, the dimension is k = 2, so we can plot the points.)
For example, if dp = 1, vp = 0 and sp = 1, the predicted labels of x = (0, 0), y = (100,−2) and z = (−100, 1) are
1, 1 and 0, respectively.
In the dataset examples below, count the number of correctly classified points (i.e., points whose predicted labelmatches the actual label) for the two decision stumps with the following values:

1. dp = 1, vp = 2 and sp = 0;
2. dp = 0, vp = 1 and sp = 1.

Additionally, determine which one is the best weak learner, i.e. the one that classifies the most points correctly.



(Blue squares denote points labeled 0 and red circles denote points labeled 1. Dimension 0 corresponds to coor-dinates in the x-axis, while dimension 1 corresponds to the y-axis.)

Unfortunately, no decision stump can classify all points correctly in the first dataset of the previous problem. Sowe will try to get around this by combining multiple decision stumps.
Boosting is a technique that enables us to increase the accuracy of a weak learner (like a decision stump). Toapply it, we first assign a weight to each one of the 4 points, which initially is 1/4 (in general, if we had n pointsthe initial weight would be 1/n). Now we work in iterations, each of which creates a new decision stump basedon the current weights and updates them at the end. After T iterations, we have T decision stumps. To classify anew point, we take the majority decision of each one of the T decision stumps (i.e., if more than half of decisionstumps predict 0, then so does the boosted classifier; and likewise for 1).
Each boosting iteration does the following:
• creates a new decision stump for the dataset with the current weights;
• doubles the weights of misclassified points; and
• renormalize the weights (i.e., divide each by the sum of all so that they sum to 1 again).
Each decision stump we create chooses dp, vp and sp to maximize the weight (rather than number) of correctlyclassified points.
Run the boosting algorithm in the first dataset above for 3 iterations. Verify that the resulting decision stumpscorrectly label all points now (when taking the majority decision).

2



C. Global Mincut

Recall the global mincut problem: you are given a connected, unweighted, undirected graph G. A global cut is aset of edges that when removed disconnects G. The goal is to find the global cut that uses the fewest edges.
In lecture you learned one way of solving this problem: Karger’s algorithm. It can be summarized in three steps:
• Assign a random weight (uniform between 0 and 1) to each edge.
• Run Kruskal’s MST algorithm until 2 connected components left.
• 2 connected components define a cut, output this cut.
Consider the following graph and set of random edge weights. Run Karger’s algorithm with these edge weightsand find the global cut it produces. Is it a mincut? If not, what is the value of the mincut.

3



4


	Review: Randomness and Multiplicative Weights
	Weak Learners and Boosting
	Global Mincut

