
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/16/24 4:16  AM

RANDOMNESS

‣ what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ approximate counting
‣ context

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Percolation. Monte Carlo simulation: open random blocked sites.

Randomized queues. Remove item chosen uniformly at random.

2

A brief recap: where we’ve already encountered randomness

A brief recap: where we’ve already encountered randomness

3

Test 2: open random sites until the system percolates
Test 7: open random sites with large n
Test 12: call open(), isOpen(), and numberOfOpenSites()
 in random order until just before system percolates
Test 13: call open() and percolates() in random order until just before system
percolates
Test 14: call open() and isFull() in random order until just before system percolates
Test 15: call all methods in random order until just before system percolates
Test 16: call all methods in random order until almost all sites are open
 (with inputs not prone to backwash)
Test 20: call all methods in random order until all sites are open
 (these inputs are prone to backwash)

A brief recap: where we’ve already encountered randomness

4

Tests 1-8 make random intermixed calls to addFirst(), addLast(),
removeFirst(), removeLast(), isEmpty(), and size(), and iterator().
Test 12: check iterator() after random calls to addFirst(), addLast(),
 removeFirst(), and removeLast() with probabilities (p1, p2, p3, p4)
Tests 1-6 make random intermixed calls to enqueue(), dequeue(), sample(),
isEmpty(), size(), and iterator().
Test 16: check randomness of sample() by enqueueing n items, repeatedly calling
 sample(), and counting the frequency of each item
Test 17: check randomness of dequeue() by enqueueing n items, dequeueing n items,
 and seeing whether each of the n! permutations is equally likely
Test 18: check randomness of iterator() by enqueueing n items, iterating over those
 n items, and seeing whether each of the n! permutations is equally likely

A brief recap: where we’ve already encountered randomness

Quicksort is a (Las Vegas) randomized algorithm.

Shuffling is needed for performance guarantee.

Equivalent alternative: pick a random pivot in each subarray.

Hash tables.

5

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

p ≤ p ≥ p

during

≤ p p ≥ p

after

l j h

p

before

l h

RANDOMNESS

‣ what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ approximate counting
‣ context

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

A.

B.

C.

D. All of the above.

E. Both B and C.

Randomness: quiz 1

7

The uniform distribution

Coin flip.

.

Roll of a die.

.

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D = 1] = ℙ[D = 2] = ⋯ = ℙ[D = 6] =
1
6

ℙ[D = 1] = ⋯ = ℙ[D = 20] =
1
20

8

Notation.

 and are random variables.

“ lands heads,” “ ” or “ is even” are events with

probabilities , etc.

A distribution consists of all outcome-probability pairs.

[uniform distribution: all probabilities equal]

C D

C D = 4 D

ℙ[C lands heads]

The uniform distribution

Generating uniform distributions.

・Over (small) domain of size :

place outcomes in array, return random element.

・Over large domains:

– Bit strings of length : [size]

flip coins, output sequence of outcomes (H = 0, T = 1).

– Permutations of items: [size]

sample elements from without replacement.

– Spanning trees of -vertex graph? [size]

n

n 2n

n

n n!

n { 1, 2, …, n }

n ≤ nn−2

9

1 2 3 4 5 6

H T

Flip a coin 6 times and count how often it lands heads. Which count is most likely?

A. 2

B. 3

C. 4

D. All of the above.

E. None of the above.

Randomness: quiz 2

10

Pseudorandomness

Computers can’t generate randomness (without specialized hardware).

Pseudorandom functions.

11

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

12

all n ! permutations
equally likely

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

13

all n ! permutations
equally likely

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

Challenge. Design a linear-time algorithm.

14

all n ! permutations
equally likely

Knuth shuffle

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Proposition. [Fisher–Yates 1938] Knuth shuffling algorithm produces a uniformly random

permutation of the input array in linear time.

15

assuming integers
uniformly at random

Knuth shuffle

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

public class Knuth {
 public static void shuffle(Object[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int r = StdRandom.uniform(i + 1);
 exch(a, i, r);
 }
 }
}

16

common bug: between 0 and n − 1
correct variant: between i and n − 1

http://algs4.cs.princeton.edu/11model/Knuth.java.html

between 0 and i

http://algs4.cs.princeton.edu/11model/Knuth.java.html

Broken Knuth shuffle

Q. What happens if integer is chosen between 0 and n − 1 ?

A. Not uniformly random!

17

instead of between
0 and i

permutation Knuth shuffle broken shuffle

A B C 1 / 6 4 / 27

A C B 1 / 6 5 / 27

B A C 1 / 6 5 / 27

B C A 1 / 6 5 / 27

C A B 1 / 6 4 / 27

C B A 1 / 6 4 / 27

probability of each permutation when shuffling { A, B, C }

33 = 27 possible outcomes
(but 27 is not a multiple of 6)

Industry story (online poker)

Texas hold’em poker. Software must shuffle electronic cards.

18

How We Learned to Cheat at Online Poker: A Study in Software Security

https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm

https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm

Industry story (online poker)

Bug 1. Random number r is never 52 ⇒ 52nd card can’t end up in 52nd place.

Bug 2. Shuffle not uniform (should be between 1 and i).

Bug 3. random() uses 32-bit seed ⇒ 232 possible shuffles.

Bug 4. Seed = milliseconds since midnight ⇒ 86.4 million shuffles.

Exploit. After seeing 5 cards and synchronizing with server clock,

can determine all future cards in real time.

19

Shuffling algorithm in FAQ at www.planetpoker.com

“ The generation of random numbers is too important to be left to chance. ”

 — Robert R. Coveyou

 for i := 1 to 52 do begin
 r := random(51) + 1;
 swap := card[r];
 card[r] := card[i];
 card[i] := swap;
 end;

between 1 and 51

http://www.planetpoker.com/ppfaq.htm

Industry story (online poker)

Best practices for shuffling (if your business depends on it).

・Use a hardware random-number generator that has passed both

the FIPS 140-2 and the NIST statistical test suites.

・Continuously monitor statistical properties:

hardware random-number generators are fragile and fail silently.

・Use an unbiased shuffling algorithm.

Bottom line. Shuffling a deck of cards is hard!

20

RANDOMNESS

‣ what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ approximate counting
‣ context

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Las Vegas algorithms

・Guaranteed to be correct.

・Running time depends on outcomes of random coin flips.

Ex. Quicksort, quickselect.

22

≤ p p ≥ p

lo j hi

Monte Carlo algorithms

Monte Carlo algorithm.

・Not guaranteed to be correct.

・Running time is deterministic.

[doesn’t depend on coin flips]

Amplification. If , repeat 500 times.

Then,

ℙ[A is correct] = 1 %

23

independence

ℙ[A1, A2, …, A500 are all incorrect] ≤ (99
100)

500

< 1 %

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Idea. Pick a random cut.

Uniformly? Since there are cuts, may succeed with only probability.2V − 1 ∼
1
2V

Global mincut problem

24

Example. Bad graph for the “pick a uniformly random cut” algorithm.

Problem. There is only 1 mincut, but total cuts, we need to be lucky to find it.2V − 1

Global mincut problem

25

suppose there are V / 2 vertices on
each side

Algorithm.

・Assign a random weight (uniform between 0 and 1) to each edge .

・Run Kruskal’s MST algorithm until 2 connected components left.

・2 connected components defines the cut.

Probability of finding a mincut: . [no mincut edges in each connected component]

Run algorithm many times and return best cut.

Remark 1. Finds global mincut in time — better than runs of Ford–Fulkerson!

Remark 2. With clever idea, improved to time (still randomized).

e

≥
1

V2

Θ(EV2 log E) Θ(V)

Θ(V2 log3 V)

Karger’s global mincut algorithm

26

Smallest # of repetitions of Karger’s algorithm to get correct answer with 99% probability?

A.

B.

C.

D.

E. None of the above.

Θ(1)

Θ(V)

Θ(V2)

Θ(V3)

Randomness: quiz 3

27

(1 −
1
x)

kx

≤ e−k

(1 −
1

V2)
5V2

≤ e−5 ≈ 0.67 %

⇓

RANDOMNESS

‣ what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ approximate counting
‣ context

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Packet counting

29

0123456789101112131415

Fix . How many bits must a counter have to count from to ?

A.

B.

C.

D.

E.

n ∈ ℕ 0 n − 1

log2 n

⌊log2 n⌋

⌈log2 n⌉

⌊log2 n⌋ + 1

n

Randomness: quiz 4

30

round down

round up

0 0 0 0 0 0

1 1 1 1 1 1

⋯

0 0 0 0 0 1

2k ≤ n < 2k+1

 bitsk

Approximate counting

Goal. Count with less memory: from to .

Why bother?

Database with 1 billion entries: bits, but bits.

Factor-6 improvement matters a lot.

∼ log2 n Θ(log log n)

log2 109 ≈ 30 log2 log2 109 ≈ 5

31

https://cloud.google.com/bigquery/docs/sketches#sketches_hll

0

Approximate counting

32

IncrementIncrementIncrementIncrement

20212223

1234

Approximate counting

Value of counter around after packets.

Memory requirement: .

k n = 20 + 21 + ⋯ + 2k−1 = 2k − 1

∼ log2 k ∼ log2 log2 n

33

public class ApproximateCounter() {
 private byte c;

 public void increment() {

 if (StdRandom.uniformInt(1 << c) == 0)
 c++;
 }

 public int count() {
 return (1 << c) - 1;
 }
}

Returns 2c

2021222k−1

⋯

c++c++c++c++

Approximate counting: probabilistic analysis

Proposition. The value of the counter after packets satisfies .

Pf. [by induction on]

Base case: initially, .

Define . They satisfy the recurrence and

34

analys is beyond

scope of this course

counter was k − 1

increased

counter was k

didn’t increase

Proposition. The value of the counter after packets satisfies .

Pf. [by induction on]

Decompose and rearrange:

Approximate counting: probabilistic analysis

35

analys is beyond

scope of this course

counter was k − 1

increased

counter was k

didn’t increase

Proposition. The value of the counter after packets satisfies .

Pf. [by induction on]

Decompose and rearrange:

Approximate counting: probabilistic analysis

36

analys is beyond

scope of this course

counter was k − 1

increased

counter was k

didn’t increase

Proposition. The value of the counter after packets satisfies .

Pf. [by induction on]

Decompose and rearrange:

Approximate counting: probabilistic analysis

37

analys is beyond

scope of this course

counter was k − 1

increased

counter was k

didn’t increase

Proposition. The value of the counter after packets satisfies .

Pf. [by induction on]

Decompose and rearrange:

Approximate counting: probabilistic analysis

38

analys is beyond

scope of this course

counter was k − 1

increased

counter was k

didn’t increase

Proposition. The value of the counter after packets satisfies .

Pf. [by induction on]

Decompose and rearrange:

Approximate counting: probabilistic analysis

39

analys is beyond

scope of this course

counter was k − 1

increased

counter was k

didn’t increase

Proposition. The value of the counter after packets satisfies .

Pf. [by induction on]

Decompose and rearrange:

Approximate counting: probabilistic analysis

40

analys is beyond

scope of this course

counter was k − 1

increased

counter was k

didn’t increase

Proposition. The value of the counter after packets satisfies .

Pf. [by induction on]

Decompose and rearrange:

Approximate counting: probabilistic analysis

41

analys is beyond

scope of this course

counter was k − 1

increased

counter was k

didn’t increase

Proposition. The value of the counter after packets satisfies .

Pf. [by induction on]

Decompose and rearrange:

Approximate counting: probabilistic analysis

42

analys is beyond

scope of this course

inductive
hypothesis

counter was k − 1

increased

counter was k

didn’t increase

RANDOMNESS

‣ what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ approximate counting
‣ context

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Beyond this course

・Approximation algorithms [intractability: stay tuned!]

・Cryptography [average-case hardness]

・Complexity theory: [derandomization]

・Mathematics: the Probabilistic Method

E.g., graph with edges has a cut with edges. [approximate maxcut]

To prove that there exists an object with property :

– sample a random object;

– show that .

・Quantum computation

ORF 309. Probability and Stochastic Systems.

𝖯 ?= 𝖡𝖯𝖯

E E/2

T

ℙ[T is satisfied] > 0

44

IBM Quantum System One

Lecture Slides © Copyright 2024 Marcel Dall'Agnol, Robert Sedgewick, and Kevin Wayne

Credits

45

image source license

Quarter Adobe Stock Education License

6-sided dice Adobe Stock Education License

20-sided die Adobe Stock Education License

Lava lamps Fast Company

Coin Toss clipground.com CC BY 4.0

IDQ Quantum Key Factory idquantique.com

SG100 protego.bytehost16.com

Las Vegas Adobe Stock Education License

Monte Carlo Adobe Stock Education License

Router Adobe Stock Education License

Random number generator XKCD CC BY-NC 2.5

https://stock.adobe.com/images/close-up-of-a-us-quarter-dollar-1994-png-isolated-on-transparent-background/531124379
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/playing-dice-white-dice-falling-3d-illustration-transparent-dices-two/522136779
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/one-brown-marbled-w20-or-20-sided-dice/563897479
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.fastcompany.com/90137157/the-hardest-working-office-design-in-america-encrypts-your-data-with-lava-lamps
https://clipground.com/images/toss-clipart-1.jpg%20%20CC%20BY%204.0
https://creativecommons.org/licenses/by/4.0/
https://www.idquantique.com/wp-content/uploads/Quantis-AIS-31-Validated-RNG-500-x-400-1.png
http://protego.byethost16.com/images/sg100_big.jpg
https://stock.adobe.com/images/aerial-las-vegas-at-night/274951182
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-monte-carlo-casino-gambling-and-entertainment-complex-located-in-monte-carlo-monaco-cote-de-azul-france-europe/400966373
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/black-wireless-modem-on-transparent-background/550895927
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://xkcd.com/221/
https://creativecommons.org/licenses/by-nc/2.5/

https://xkcd.com/221/

int getRandomNumber()
{
 return 4; // chosen by fair dice roll.
 // guaranteed to be random.
}

