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Percolation.  Monte Carlo simulation:  open random blocked sites. 

 

 

 

 

 

 

 

Randomized queues.  Remove item chosen uniformly at random.
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A brief recap:  where we’ve already encountered randomness
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Test 2: open random sites until the system percolates 
Test 7: open random sites with large n 
Test 12: call open(), isOpen(), and numberOfOpenSites() 
         in random order until just before system percolates 
Test 13: call open() and percolates() in random order until just before system 
percolates 
Test 14: call open() and isFull() in random order until just before system percolates 
Test 15: call all methods in random order until just before system percolates 
Test 16: call all methods in random order until almost all sites are open 
         (with inputs not prone to backwash) 
Test 20: call all methods in random order until all sites are open 
         (these inputs are prone to backwash)



A brief recap:  where we’ve already encountered randomness
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Tests 1-8 make random intermixed calls to addFirst(), addLast(), 
removeFirst(), removeLast(), isEmpty(), and size(), and iterator(). 
Test 12: check iterator() after random calls to addFirst(), addLast(), 
         removeFirst(), and removeLast() with probabilities (p1, p2, p3, p4) 
Tests 1-6 make random intermixed calls to enqueue(), dequeue(), sample(), 
isEmpty(), size(), and iterator().
Test 16: check randomness of sample() by enqueueing n items, repeatedly calling 
         sample(), and counting the frequency of each item 
Test 17: check randomness of dequeue() by enqueueing n items, dequeueing n items, 
         and seeing whether each of the n! permutations is equally likely 
Test 18: check randomness of iterator() by enqueueing n items, iterating over those 
         n items, and seeing whether each of the n! permutations is equally likely



A brief recap:  where we’ve already encountered randomness

Quicksort is a (Las Vegas) randomized algorithm. 

Shuffling is needed for performance guarantee. 

Equivalent alternative: pick a random pivot in each subarray.  

 

 

 

 

 

 

Hash tables.
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Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

A.   

B.   

C.   

D. All of the above. 

E. Both B and C.

Randomness:  quiz 1
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The uniform distribution

Coin flip. 

 

 

 

. 

 

Roll of a die. 

 

 

 

. 
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ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D = 1] = ℙ[D = 2] = ⋯ = ℙ[D = 6] =
1
6

ℙ[D = 1] = ⋯ = ℙ[D = 20] =
1
20
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Notation. 

 and  are random variables. 

“  lands heads,” “ ” or “  is even” are events with 

probabilities , etc. 

A distribution consists of all outcome-probability pairs. 

[uniform distribution: all probabilities equal]

C D

C D = 4 D

ℙ[C lands heads]



The uniform distribution

Generating uniform distributions. 

・Over (small) domain of size : 

place outcomes in array, return random element. 

 

 

 

 

 

・Over large domains: 

– Bit strings of length :  [ size  ] 

flip  coins, output sequence of outcomes (H = 0, T = 1). 

– Permutations of  items:  [ size  ] 

sample  elements from  without replacement. 

– Spanning trees of -vertex graph?  [ size  ]

n

n 2n

n

n n!

n { 1, 2, …, n }

n ≤ nn−2
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Flip a coin 6 times and count how often it lands heads. Which count is most likely?

A. 2 

B. 3 

C. 4 

D. All of the above. 

E. None of the above.

Randomness:  quiz 2
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Pseudorandomness

Computers can’t generate randomness (without specialized hardware). 

Pseudorandom functions. 
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Interview question:  shuffle an array

Goal.  Rearrange array so that result is a uniformly random permutation. 

12
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Interview question:  shuffle an array

Goal.  Rearrange array so that result is a uniformly random permutation. 

 

 

 

 

 

 

 

 

 

Challenge.  Design a linear-time algorithm.
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all n ! permutations
equally likely



Knuth shuffle

・In iteration i, pick integer r between 0 and i uniformly at random. 

・Swap a[i] and a[r]. 

Proposition. [Fisher–Yates 1938]  Knuth shuffling algorithm produces a uniformly random 

permutation of the input array in linear time. 

15

assuming integers
uniformly at random



Knuth shuffle

・In iteration i, pick integer r between 0 and i uniformly at random. 

・Swap a[i] and a[r].

public class Knuth { 
   public static void shuffle(Object[] a) { 
     int n = a.length; 
      for (int i = 0; i < n; i++) { 
         int r = StdRandom.uniform(i + 1); 
         exch(a, i, r); 
      } 
   } 
}
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common bug:     between 0 and n − 1
correct variant:  between i and n − 1

http://algs4.cs.princeton.edu/11model/Knuth.java.html

between 0 and i

http://algs4.cs.princeton.edu/11model/Knuth.java.html


Broken Knuth shuffle

Q.  What happens if integer is chosen between 0 and n − 1 ? 

A.  Not uniformly random!

17

instead of between 
0 and i

permutation Knuth shuffle broken shuffle

A B C 1 / 6 4 / 27

A C B 1 / 6 5 / 27

B A C 1 / 6 5 / 27

B C A 1 / 6 5 / 27

C A B 1 / 6 4 / 27

C B A 1 / 6 4 / 27

probability of each permutation when shuffling { A,  B,  C }

33 = 27 possible outcomes
(but 27 is not a multiple of 6)



Industry story (online poker)

Texas hold’em poker.  Software must shuffle electronic cards.
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How We Learned to Cheat at Online Poker: A Study in Software Security

https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm

https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm


Industry story (online poker)

Bug 1.  Random number r is never 52  ⇒  52nd card can’t end up in 52nd place. 

Bug 2.  Shuffle not uniform (should be between 1 and i). 

Bug 3.  random() uses 32-bit seed   ⇒  232 possible shuffles. 

Bug 4.  Seed = milliseconds since midnight  ⇒  86.4 million shuffles. 

 

 

Exploit.  After seeing 5 cards and synchronizing with server clock, 

can determine all future cards in real time.
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Shuffling algorithm in FAQ at www.planetpoker.com

“  The generation of random numbers is too important to be left to chance. ” 

         — Robert R. Coveyou

 for i := 1 to 52 do begin 
    r := random(51) + 1; 
    swap := card[r]; 
    card[r] := card[i]; 
    card[i] := swap; 
 end;

between 1 and 51

http://www.planetpoker.com/ppfaq.htm


Industry story (online poker)

Best practices for shuffling (if your business depends on it). 

・Use a hardware random-number generator that has passed both 

the FIPS 140-2 and the NIST statistical test suites. 

・Continuously monitor statistical properties: 

hardware random-number generators are fragile and fail silently. 

・Use an unbiased shuffling algorithm. 

Bottom line.  Shuffling a deck of cards is hard!

20
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Las Vegas algorithms

・Guaranteed to be correct. 

・Running time depends on outcomes of random coin flips. 

Ex. Quicksort, quickselect. 

22

≤ p p ≥ p

lo j hi



Monte Carlo algorithms

Monte Carlo algorithm. 

・Not guaranteed to be correct. 

・Running time is deterministic. 

[doesn’t depend on coin flips] 

Amplification.  If , repeat 500 times. 

 

Then,

ℙ[A is correct] = 1 %

23

independence

ℙ[A1, A2, …, A500 are all incorrect] ≤ ( 99
100 )

500

< 1 %



Goal. Find cut in undirected graph with fewest edges (for any source and sink). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Idea. Pick a random cut. 

Uniformly? Since there are  cuts, may succeed with only  probability.2V − 1 ∼
1
2V

Global mincut problem

24



Example. Bad graph for the “pick a uniformly random cut” algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem. There is only 1 mincut, but  total cuts, we need to be lucky to find it.2V − 1

Global mincut problem
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suppose there are V / 2 vertices on 
each side



Algorithm. 

・Assign a random weight (uniform between 0 and 1) to each edge . 

・Run Kruskal’s MST algorithm until 2 connected components left. 

・2 connected components defines the cut. 

Probability of finding a mincut: .  [ no mincut edges in each connected component ] 

Run algorithm many times and return best cut. 

Remark 1.  Finds global mincut in  time — better than  runs of Ford–Fulkerson! 

Remark 2.  With clever idea, improved to  time (still randomized).

e

≥
1

V2

Θ(EV2 log E) Θ(V )

Θ(V2 log3 V )

Karger’s global mincut algorithm
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Smallest # of repetitions of Karger’s algorithm to get correct answer with 99% probability?

A.  

B.  

C.  

D.  

E. None of the above.

Θ(1)

Θ(V )

Θ(V2)

Θ(V3)

Randomness:  quiz 3
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(1 −
1
x )

kx

≤ e−k

(1 −
1

V2 )
5V2

≤ e−5 ≈ 0.67 %

⇓
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Packet counting

29

0123456789101112131415



Fix . How many bits must a counter have to count from  to ?

A.  

B.  

C.  

D.  

E.

n ∈ ℕ 0 n − 1

log2 n

⌊log2 n⌋

⌈log2 n⌉

⌊log2 n⌋ + 1

n

Randomness:  quiz 4
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round down

round up

0 0 0 0 0 0

1 1 1 1 1 1

⋯

0 0 0 0 0 1

2k ≤ n < 2k+1

 bitsk



Approximate counting

Goal. Count with less memory: from  to . 

 

 

Why bother?  

Database with 1 billion entries:  bits, but  bits. 

Factor-6 improvement matters a lot.

∼ log2 n Θ(log log n)

log2 109 ≈ 30 log2 log2 109 ≈ 5
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https://cloud.google.com/bigquery/docs/sketches#sketches_hll



0

Approximate counting

32

IncrementIncrementIncrementIncrement

20212223

1234



Approximate counting

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value of counter around  after  packets. 

Memory requirement: .

k n = 20 + 21 + ⋯ + 2k−1 = 2k − 1

∼ log2 k ∼ log2 log2 n
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public class ApproximateCounter() { 
   private byte c; 
 
   public void increment() { 

    if (StdRandom.uniformInt(1 << c) == 0) 
        c++; 
 } 

   public int count() { 
      return (1 << c) - 1; 
   } 
}

Returns 2c

2021222k−1

⋯

c++c++c++c++



Approximate counting:  probabilistic analysis

Proposition.  The value       of the counter after    packets satisfies                        . 

Pf.  [by induction on   ] 

Base case: initially,                                 . 

Define                           . They satisfy the recurrence                         and

34

analys is beyond 

scope of this course

counter was k − 1

increased

counter was k

didn’t increase



Proposition.  The value       of the counter after    packets satisfies                        . 

Pf.  [by induction on   ] 

Decompose               and rearrange:

Approximate counting:  probabilistic analysis
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Proposition.  The value       of the counter after    packets satisfies                        . 

Pf.  [by induction on   ] 

Decompose               and rearrange:

Approximate counting:  probabilistic analysis
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analys is beyond 

scope of this course

inductive
hypothesis 

counter was k − 1

increased

counter was k

didn’t increase
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Beyond this course

・Approximation algorithms  [intractability: stay tuned!] 

・Cryptography  [average-case hardness] 

・Complexity theory:   [derandomization] 

・Mathematics: the Probabilistic Method 

E.g., graph with  edges has a cut with  edges.  [approximate maxcut] 

To prove that there exists an object with property : 

– sample a random object; 

– show that . 

・Quantum computation 

 

 

 

ORF 309.  Probability and Stochastic Systems.

𝖯 ?= 𝖡𝖯𝖯

E E/2

T

ℙ[T is satisfied] > 0

44

IBM Quantum System One
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int getRandomNumber()
{
    return 4;     // chosen by fair dice roll.
                         // guaranteed to be random.
}


