Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Dealing with intractability

Last updated on 4/23/24 12:04PM

Overview: introduction to advanced topics

Main topics. [final two lectures]

- Intractability: barriers to designing efficient algorithms.
- Algorithm design: paradigms for solving problems.

Shifting gears.

- From individual problems to problem-solving models/classes.
- From linear/quadratic to poly-time/exponential scale.
- From implementation details to conceptual frameworks.

Goals.

- Introduce you to essential ideas.
- Place algorithms and techniques we've studied in a larger context.

INTRACTABILITY

Pvs. NP

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Fundamental questions

- Q1. What is an algorithm?
- Q2. What is an efficient algorithm?
- Q3. Which problems can be solved efficiently and which are intractable?
- **Q4.** How can we prove that a problem is intractable?

A computationally easy problem: perfect matching

Perfect matching (search). Given a bipartite graph, find a perfect matching *or report that no such matching exists* (set of edges such that every vertex is an endpoint of exactly one edge in the set).

bipartite graph

perfect matching

- 1-4′
- 2-1′
- 3-3′
- 4-5'
- 5-2'

A difficult problem: integer factorization

Integer factorization (search). Given an integer x, find a nontrivial factor. \leftarrow or report that no such factor exists

147573952589676412927 Ex.

a FACTOR instance

193707721

a factor

Core application area. Cryptography.

Brute-force search. Try all possible divisors between 2 and \sqrt{x} .

Q. Can we do anything substantially more clever?

neither 1 *nor x*

1350664108659952233496032162788059699388814756056670 2752448514385152651060485953383394028715057190944179 8207282164471551373680419703964191743046496589274256 2393410208643832021103729587257623585096431105640735 0150818751067659462920556368552947521350085287941637 7328533906109750544334999811150056977236890927563

a very challenging FACTOR instance (factor to earn an A+ in COS 226)

if there's a nontrivial factor larger than \sqrt{x} , there is one smaller than \sqrt{x}

Another difficult problem: boolean satisfiability

Boolean satisfiability (search). Given a system of boolean equations, find a satisfying truth assignment.

Ex.

¬ <i>x</i> ₁	Oľ	x_2	Oľ	<i>x</i> ₃			=
x_1	Oľ	¬ <i>x</i> ₂	Or	x_3			=
¬ <i>x</i> ₁	Oľ	¬ <i>x</i> ₂	or	$\neg x_3$			=
¬ <i>x</i> ₁	or	¬ <i>x</i> ₂	or		or	X_4	=
		¬ <i>x</i> ₂	or	x_3	or	X_4	=

a SAT instance

Applications.

- Automatic verification systems for software.
- Mean field diluted spin glass model in physics.
- Electronic design automation (EDA) for hardware.

•

CNF, conjunctive normal form (AND of ORs)

or report that no such assignment is possible

true				
true	<i>x</i> ₁	=	false	
true	x_2	=	false	
true	<i>x</i> ₃	=	true	
true	x_4	=	true	

a satisfying truth assignment

7

Another difficult problem: boolean satisfiability

Boolean satisfiability (search). Given a system of boolean equations, find a satisfying truth assignment.

Ex.

 x_1	Or	x_2	or	<i>x</i> ₃			=
x_1	Oľ	$\neg x_2$	or	x_3			=
 x ₁	or	$\neg x_2$	or	$\neg x_3$			=
 x ₁	or	$\neg x_2$	or		or	X_4	=
		$\neg x_2$	or	x_3	or	X_4	=

a SAT instance

Brute-force search. Try all 2^n possible truth assignments, where n = # variables.

- Q. Can we do anything substantially more clever?
- A. Probably no. [stay tuned]

needle in a haystack

Imagine a galactic computer...

- With as many processors as electrons in the universe.
- Each processor having the power of today's supercomputers.
- Each processor working for the lifetime of the universe.

quantity	estimate
electrons in universe	10 ⁷⁹
instructions per second	10^{13}
age of universe in seconds	10^{17}

Q. Could galactic computer solve satisfiability instance with 1,000 variables using brute-force search? A. Not even close: $2^{1000} > 10^{300} >> 10^{79} \cdot 10^{13} \cdot 10^{17} = 10^{109}$.

Lesson. Exponential growth dwarfs technological change.

Polynomial time

- Q2. What is an efficient algorithm?
- A2. Algorithm whose running time is at most polynor

Polynomial time. Number of elementary operations is for some constant a and b. \leftarrow must hold for all inputs of su

- **Q1.** What is an algorithm?
- A1. A Turing Machine! Equivalently, a program in Java

the extended Church-Turing thesis

n = # of bits	s in input			
mial in input size <i>n</i>	order	emoji	name	to
	$\Theta(1)$		constant	
s at most <i>an^b</i>	$\Theta(\log n)$		logarithmic	
ize n	$\Theta(n)$		linear	
	$\Theta(n \log n)$		linearithmic	
a/Python/C++/	$\Theta(n^2)$		quadratic	
	$\Theta(n^3)$		cubic	
REAL	$\Theta(n^{\log n})$		quasipolynomial	
	$\Theta(1.1^n)$		exponential	
	$\Theta(2^n)$	U	exponential	
1011101	$\Theta(n!)$		factorial	

A Turing machine

Which of the following are poly-time algorithms?

- A. Brute-force search for boolean satisfiability.
- **B.** Brute-force search for integer factorization.
- C. Both A and B.
- **D.** Neither A nor B.

- Q3. Which problems can be solved efficiently?
- A3. Those for which poly-time algorithms exist.
- Why do we define poly-time as efficient?
- **Def.** A problem is intractable if no poly-time algorithm solves it.
- Q4. How can we prove that a problem is intractable?
- A4. Generally no easy way. Focus of today's lecture! Often times, efficient algorithms require deep math insights.

Intractable problems

INTRACTABILITY

Pvs. NP

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

A decision problem is Boolean function (given an input answer YES/NO).

Def. P is the set of all decision problems that can be solved in poly-time.

Ex 1 – Perfect matching (decision): Given a bipartite graph, *is there* a perfect matching? trick – max flow! bipartite graph

Are all "interesting" problems in **P**? Maybe there is always a clever trick for solving...

perfect matching

1-4' 2-1' 3-3' 4-5' 5-2'

The NP complexity class

Def. NP is the set of all decision problems for which you can verify a YES answer in poly-time \leftarrow $\stackrel{NP = Nondeterministic Poly-time}{Poly-time}$ given a "witness" (a.k.a "proof", "certificate").

Ex 1 – boolean satisfiability (*decision*): Given a system of *m* boolean equations in *n* variables, *is there* an assignment that satisfies all equations?

¬ <i>x</i> ₁	or	x_2	or	x_3		=	true
x_1	or	¬ <i>x</i> ₂	or	x_3		=	true
¬ <i>x</i> ₁	or	¬ <i>x</i> ₂	or	¬ <i>x</i> ₃		=	true
¬ <i>x</i> ₁	or	¬ <i>x</i> ₂	or		or x_4	=	true
		$\neg x_2$	or	<i>x</i> ₃	or x_4	=	true

A SAT instance

Witness. A satisfying assignment. Poly-time verification algorithm. Plug values of assignment into the equations and check. *werify in O(mn) time*

rministic

Def. NP is the set of all decision problems for which you can verify a YES answer in poly-time given a "witness" (a.k.a "proof", "certificate").

Ex 2 – integer factorization (*decision*): Given two integers x and k, does x have a nontrivial factor greater than *k* ?

$$x = 147573952589676412927 \qquad k = 10$$

a FACTOR instance

Witness. A nontrivial factor of x greater than k. Poly-time verification algorithm. Check that the witness is greater than k and that it's a divisor of x. $\leftarrow O(n^2)$ time via long division

Note: For a problem to be in **NP**, it suffices to verify a *purported* witness for a *YES* answer.

- Doesn't need to *find* the witness (e.g., a candidate factor is given).
- Doesn't need verify a NO answer (e.g., no factor greater than k).

000,000,000

193,707,721

witness

Which decision version of longest path is in NP?

- A. Given a graph G and an integer k, is the longest simple path in G of length at most k edges.
- **B.** Given a graph *G* and an integer *k*, is the longest simple path in *G* of length *at least k* edges.
- C. Both A and B.
- **D.** Neither A nor B.

simple path in G of length *at most k* edges. simple path in G of length *at least k* edges.

= set of problems whose solution can be *computed* efficiently (in poly-time). Ρ **NP** = set of problems whose solution can be *verified* efficiently (in poly-time). any string serves as witness **Observation.** NP contains P \leftarrow e.g., perfect matching is in NP THE question. Does P = NP? \leftarrow \$1M Two possible worlds. NP intractable Ρ problems

decision problems

$P \neq NP$

brute-force search may be the best we can do

 $\mathbf{P} = \mathbf{NP}$

poly-time algorithms for FACTOR, SAT, LONGEST-PATH, ...

P vs **NP** is central in math, science, technology and beyond. **NP** models many intellectual challenges humanity faces: Why would you attempt to solve a problem if you cannot even tell if a solution is good?

domain	problem
mathematics	is a conjecture correct?
engineering	given constraints (size, weight, energy), find a design (bridge, medicine, computer)
science	given data on a phenomenon, find a theory explaining it
the arts	write a beautiful poem / novel / pop song, draw a beautiful picture

Verifying a solution seems like it should be way easier than finding it! This suggests $P \neq NP$.

Analogy for P vs NP. Creative genius vs. ordinary appreciation of creativity.

witness/solution

mathematical proof

blueprint

a scientific theory

a poem, novel, pop song, drawing

ordinary appreciation

creative genius

Princeton computer science building

Princeton computer science building (closeup)

Ν

Ρ

?

INTRACTABILITY

Pvs. NP

introduction

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

poly-time reductions

NP-completeness

dealing with intractability

Goal. Classify problems according to computational requirements.

Goal'. Suppose we could (not) solve problem *X* efficiently. What else could we (not) solve efficiently?

"Give me a lever long enough and a fulcrum on which to place it, and I shall move the world." — Archimedes

Poly-time reduction

Def. Problem X poly-time reduces to problem Y if X can be solved with: $-X \leq Y$

- Polynomial number of elementary operations.
- Polynomial number of calls to Y. \leftarrow Cook reduction

- **Ex 1.** MEDIAN poly-time reduces to SORT.
- **Ex 2.** BIPARTITE-MATCHING poly-time reduces to MAX-FLOW.

Design algorithms. If X poly-time reduces to Y and Y can be solved efficiently, then X can be solved efficiently.

Establish intractability. If SAT is intractable and SAT poly-time reduces to Y, then Y is intractable.

Poly-time reduction

Def. Problem X poly-time reduces to problem Y if X can be solved with:

- Polynomial number of elementary operations.
- Polynomial number of calls to Y.

Common mistake. Confuse X poly-time reduces to Y with Y poly-time reduces to Y.

X reduces to SAT: X is no harder than SAT (A solution to SAT implies a solution to X) **SAT reduces to X**: X is no easier than SAT (A solution to X implies a solution to SAT)

"up to polynomials"

ILP. Given a system of linear inequalities, is there a solution where all variables take integer values?

$3x_1$	+	$5x_2$	+	$2x_3$	+	X_4	+	$4x_{5}$	≥
$5x_1$	+	$2x_2$			+	$4x_4$	+	<i>x</i> ₅	<u> </u>
x_1			+	<i>x</i> ₃	+	$2x_4$			\leq
$3x_1$			+	$4x_{3}$	+	$7x_4$			\leq
x_1					+	x_4			≤
x_1			+	<i>x</i> ₃			+	<i>x</i> ₅	\leq
					insta	nce I			

Context. Cornerstone problem in operations research. Remark. Finding a real-valued solution can be solved in poly-time (linear programming).

SAT poly-time reduces to ILP

here X = SAT *and* Y = ILP

SAT poly-time reduces to ILP

SAT. Given a system of *m* boolean equations in *n* variables, is there an assignment that satisfies all equations?

ILP. Given a system of linear inequalities, is there an assignment where all variables take integer values?

Suppose that Problem X poly-time reduces to Problem Y. Which of the following can we infer?

- If X can be solved in poly-time, then so can Y. Α.
- If Y can be solved in $\Theta(n^3)$ time, then X can be solved in $\Theta(n^3)$ time. Β.
- If Y can be solved in $\Theta(n^3)$ time, then X can be solved in poly-time. С.
- If X cannot be solved in $\Theta(n^3)$ time, then Y cannot be solved in poly-time. D.
- Ε. If Y cannot be solved in poly-time, then neither can X.

More poly-time reductions from SAT

Richard Karp (1972)

INTRACTABILITY

introduction

Pvs. NP

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

poly-time reductions

NP-completeness

Dealing with intractability

Def. A decision problem is **NP**-complete if

- It is in NP.
- All problems in NP poly-time to reduce to it. *(intuitively, the "hardest problems" in* NP

Two worlds.

 $P \neq NP$

 $\mathbf{P} = \mathbf{NP}$

Suppose that *X* is NP-complete. What can you infer?

- I. X is in NP.
- **II.** If *X* can be solved in poly-time, then $\mathbf{P} = \mathbf{NP}$.
- **III.** If *X* cannot be solved in poly-time, then $P \neq NP$.
- A. I only.
- ll only. B.
- I and II only. С.
- **D.** I, II, and III.

Cook–Levin theorem. SAT is NP–complete. Pioneering result in computer science!

Corollary. SAT can be solved in poly-time if and only if P = NP.

Impact. To prove that a new problem Y is NP-complete, suffices to show that:

- Y is in NP.
- SAT poly-time reduces to *Y*.

Stephen Cook (1971)

Leonid Levin (1971)

Implications of Karp + Cook-Levin

More NP-complete problems

NP-complete	field of study
optimal mesh partitioning	Aerospace engineering
phylogeny recor	Biology
heat exchanger netw	Chemical engineering
protein fol	Chemistry
equilibrium of urba	Civil engineering
computation of arbitrage in final	Economics
VLSI laye	Electrical engineering
optimal placement of con	Environmental engineering
minimum risk portfolie	Financial engineering
Nash equilibrium that max	Game theory
structure of turbulence	Mechanical engineering
reconstructing 3d shape from l	Medicine
traveling salesperson problen	Operations research
partition function of	Physics
Shapley–Shubik v	Politics
versions of Sudoku, Checker	Pop culture
optimal experime	Statistics

problem

g for finite elements

nstruction

work synthesis

lding

an traffic flow

incial markets with friction

out

ontaminant sensors

o of given return

cimizes social welfare

in sheared flows

biplane angiocardiogram

m, integer programming

³*d* Ising model

voting power

rs, Minesweeper, Tetris

ental design

6,000+ scientific papers per year.

INTRACTABILITY

Pvs. NP

introduction

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

poly-time reductions

NP-completeness

dealing with intractability

Dealing with intractability

Identifying intractable problems

Establishing NP-completeness through poly-time reduction is an important tool in guiding algorithm design efforts.

Q4'. How to convince yourself that a problem is (probably) intractable? A. [hard way] Long futile search for a poly-time algorithm (as for SAT). A. [easy way] Poly-time reduction from SAT (or any other NP-complete problem).

Caveat. Intricate reductions are common.

Approaches to dealing with intractability

- **Q.** What to do when you identify an **NP**-complete problem?
- A. Safe to assume it is intractable: no *worst-case* poly-time algorithm for *all* problem instances.

Q1. Must your algorithm *always* run fast? Solve real-world instances. Backtracking, TSP, SAT.

Q2. Do you need the *right/best* solution or a *good* solution? Approximation algorithms. Look for suboptimal solutions.

Q3. Can you use the problem's hardness in your favor? Leverage intractability. Cryptography.

Observations.

- Worst-case inputs may not occur for practical problems.
- Instances that do occur in practice may be easier to solve.
- Reasonable approach: relax the condition of guaranteed poly-time.

Boolean satisfiability.

- Chaff solves real-world instances with 10,000+ variables.
- Princeton senior independent work (!) in 2000.

Traveling salesperson problem.

- Concorde routinely solves large real-world instances.
- 85,900-city instance solved in 2006.

Integer linear programming.

- CPLEX routinely solves large real-world instances.
- Routinely used in scientific and commercial applications.

TSP solution for 13,509 US cities

Dealing with intractability: approximation algorithms

MAX-CUT (search): given a graph *G*, find the cut with maximum number *M* of crossing edges. Approximate version: find a large cut.

Algorithm: take a uniformly random cut. Expected size is E/2; random assignment size is $\geq E/2 \geq M/2$ with at least 50% probability.

can improve to .878M

Dealing with intractability: approximation algorithms

3-SAT (search): given 3-variable equations on *n* boolean variables, find satisfying truth assignment. Approximate version: find assignment that satisfies many equations.

Algorithm: take a uniformly random assignment. Expected fraction of satisfied equations is 7/8.

Remark. Some problems have approximation algorithms with arbitrary precision. For others, finding better approximations is also NP-complete!

can't be improved (unless P = NP)

Leveraging intractability: RSA cryptosystem

Modern cryptography applications.

- Secure a secret communication.
- Append a digital signature.
- Credit card transactions.

 \bullet . . .

RSA cryptosystem exploits intractability.

- multiply/divide two *n*-digit integers (easy). • To use:
- To break: factor a 2*n*-digit integer (intractable?).

MasterCard SecureCode

Ron Rivest

Len Adelman

Leveraging intractability: guiding scientific inquiry

- 1926. Ising introduces a mathematical model for ferromagnetism.
- **1930s.** Closed form solution is a holy grail of statistical mechanics.
- Onsager finds closed form solution to 2D version in tour de force. 1944.
- **1950s.** Feynman (and others) seek closed form solution to 3D version.
- 2000. Istrail shows that ISING-3D is **NP**-complete.

Bottom line. Search for a closed formula seems futile.

Summary

- Set of problems solvable in poly-time. Ρ.
- **NP.** Set of problems checkable in poly-time.

Use theory as a guide

- You will confront **NP**-complete problems in your career.
- An poly-time algorithm for an **NP**-complete problem would be a stunning scientific breakthrough (a proof that P = NP).
- It is safe to assume that $\mathbf{P} \neq \mathbf{NP}$ and that such problems are intractable.
- Identify these situations and proceed accordingly.

Credits

image

Gears Finding a Needle in a Haystack Galactic Computer Taylor Swift Caricature Fans in a Stadium P and NP cookbooks Homer Simpson and P = NPArchimedes, Lever, and Fulcrum COS Building, Western Wall Richard Karp Stephen Cook Leonid Levin Garey–Johnson Cartoon Updated Cartoon of Turing Machine Warning sign Glass with water John Nash

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

source	license
Adobe Stock	Education License
Basic Vision	
Adobe Stock	Education License
Cory Jensen	<u>CC BY-NC-ND</u>
Adobe Stock	Education License
Futurama S2E10	
Simpsons	
unknown	
Kevin Wayne	
Berkeley EECS	
<u>U. Toronto</u>	
<u>Wikimedia</u>	<u>CC BY-SA 3.0</u>
Stefan Szeider	<u>CC BY 4.0</u>
Tom Dunne	
Adobe Stock	Education License
Adobe Stock	Education License
Wikimedia	<u>CC BY-SA 3.0</u>

"Now my general conjecture is as follows: for almost all sufficiently complex types of enciphering, [...] the mean key computation length increases exponentially with the length of the key [...].

The nature of this conjecture is such that I cannot prove it [...]. Nor do I expect it to be proven. "

— John Nash

