
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/23/24 12:04  PM

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣Dealing with intractability
https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Overview: introduction to advanced topics

Main topics. [final two lectures]

・Intractability: barriers to designing efficient algorithms.

・Algorithm design: paradigms for solving problems.
 
Shifting gears.

・From individual problems to problem-solving models/classes.

・From linear/quadratic to poly-time/exponential scale.

・From implementation details to conceptual frameworks.
 
Goals.

・Introduce you to essential ideas.

・Place algorithms and techniques we’ve studied in a larger context.

2

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣ dealing with intractabilityROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Fundamental questions

Q1. What is an algorithm?
Q2. What is an efficient algorithm?
Q3. Which problems can be solved efficiently and which are intractable?
Q4. How can we prove that a problem is intractable?

4

A computationally easy problem: perfect matching

Perfect matching (search). Given a bipartite graph, find a perfect matching  
(set of edges such that every vertex is an endpoint of exactly one edge in the set).

5

bipartite graph perfect matching

1–4′

2–1′

3–3′

4–5′

5–2′
3

1

5

2

4

1′

3′

4′

2′

5′

or report that no such matching exists

A difficult problem: integer factorization

Integer factorization (search). Given an integer , find a nontrivial factor.  

Ex.  
 
 

Core application area. Cryptography.
 
Brute-force search. Try all possible divisors between 2 and .

Q. Can we do anything substantially more clever?

x

x

6

neither 1 nor x

147573952589676412927 193707721

a FACTOR instance a factor 1350664108659952233496032162788059699388814756056670
2752448514385152651060485953383394028715057190944179
8207282164471551373680419703964191743046496589274256
2393410208643832021103729587257623585096431105640735
0150818751067659462920556368552947521350085287941637
7328533906109750544334999811150056977236890927563

a very challenging FACTOR instance
(factor to earn an A+ in COS 226)

or report that no such factor exists

if there’s a nontrivial factor larger
than , there is one smaller than x x

Another difficult problem: boolean satisfiability

Boolean satisfiability (search). Given a system of boolean equations, find a satisfying truth assignment.
 
Ex.  
 
 
 
 
 
 

 
Applications.

・Automatic verification systems for software.

・Mean field diluted spin glass model in physics.

・Electronic design automation (EDA) for hardware.

・…
7

¬ x1 or x2 or x3 = true

x1 or ¬ x2 or x3 = true

¬ x1 or ¬ x2 or ¬ x3 = true

¬ x1 or ¬ x2 or or x4 = true

¬ x2 or x3 or x4 = true

a SAT instance

x1 = false

x2 = false

x3 = true

x4 = true

a satisfying truth assignment

or report that no such
assignment is possible

CNF, conjunctive normal
form (AND of ORs)

Another difficult problem: boolean satisfiability

Boolean satisfiability (search). Given a system of boolean equations, find a satisfying truth assignment.

Ex.  
 
 
 
 
 
 
 

Brute-force search. Try all 2n possible truth assignments, where n = # variables.
 
Q. Can we do anything substantially more clever?
A. Probably no. [stay tuned]

8

needle in a haystack

¬ x1 or x2 or x3 = true

x1 or ¬ x2 or x3 = true

¬ x1 or ¬ x2 or ¬ x3 = true

¬ x1 or ¬ x2 or or x4 = true

¬ x2 or x3 or x4 = true

a SAT instance

How difficult can it be?

Imagine a galactic computer…

・With as many processors as electrons in the universe.

・Each processor having the power of today’s supercomputers.

・Each processor working for the lifetime of the universe.
 
 
 
 
 
 
 
 
Q. Could galactic computer solve satisfiability instance with 1,000 variables using brute-force search?
A. Not even close: 21000 > 10300 >> 1079 ⋅ 1013 ⋅ 1017 = 10109.

 
Lesson. Exponential growth dwarfs technological change.

9

quantity estimate

electrons in universe 1079

instructions per second 1013

age of universe in seconds 1017

Polynomial time

Q2. What is an efficient algorithm?
A2. Algorithm whose running time is at most polynomial in input size n.
 
Polynomial time. Number of elementary operations is at most  
for some constant and .

Q1. What is an algorithm?
A1. A Turing Machine! Equivalently, a program in Java/Python/C++/…

anb

a b

10

n = # of bits in input

must hold for all inputs of size n

order emoji name today

Θ(1) 😍 constant 🙂

Θ(log n) 😎 logarithmic 🙂

Θ(n) 😁 linear 🙂

Θ(n log n) 😀 linearithmic 🙂

Θ(n2) 😕 quadratic 🙂

Θ(n3) 🙁 cubic 🙂

Θ(nlog n) 😨 quasipolynomial 👿

Θ(1.1n) 😭 exponential 👿

Θ(2n) 😈 exponential 👿

Θ(n!) 👿 factorial 👿

the extended Church-Turing thesis

A Turing machine

Intractability: quiz 1

Which of the following are poly-time algorithms?

A. Brute-force search for boolean satisfiability.

B. Brute-force search for integer factorization.

C. Both A and B.

D. Neither A nor B.

11

involves enumerating 2n truth assignments
(n = # variables, m = # equations)

involves checking possible divisors
(n = # bits in integer x)

x = 2n = 2n / 2

Intractable problems

Q3. Which problems can be solved efficiently?
A3. Those for which poly-time algorithms exist.

Why do we define poly-time as efficient?
 
Def. A problem is intractable if no poly-time algorithm solves it.
 
Q4. How can we prove that a problem is intractable?
A4. Generally no easy way. Focus of today’s lecture!  
 Often times, efficient algorithms require deep math insights.

12

tractable intractable?

primality integer factorization

shortest path longest path

min cut max cut

Euler cycle Hamiltonian cycle

2-SAT 3-SAT

⋮ ⋮
3 boolean variables

per equation

require math
insights

Intractable problems

13

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣ dealing with intractabilityROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

The P complexity class

A decision problem is Boolean function (given an input answer YES/NO).  

Def. P is the set of all decision problems that can be solved in poly-time.
 
Ex 1 - Perfect matching (decision): Given a bipartite graph, is there a perfect matching?
trick - max flow!

Are all “interesting” problems in P? Maybe there is always a clever trick for solving…
15

perfect matching

1–4′

2–1′

3–3′

4–5′

5–2′

bipartite graph

3

1

5

2

4

1′

3′

4′

2′

5′

Def. NP is the set of all decision problems for which you can verify a YES answer in poly-time
given a “witness” (a.k.a “proof”, “certificate”).
 
Ex 1 - boolean satisfiability (decision): Given a system of m boolean equations in n variables,
is there an assignment that satisfies all equations? 
 
 
 
 
 
 
 

Witness. A satisfying assignment.
Poly-time verification algorithm. Plug values of assignment into the equations and check.

The NP complexity class

16

A SAT instance

¬ x1 or x2 or x3 = true

x1 or ¬ x2 or x3 = true

¬ x1 or ¬ x2 or ¬ x3 = true

¬ x1 or ¬ x2 or or x4 = true

¬ x2 or x3 or x4 = true

verify in timeO(mn)

x1 = false

x2 = false

x3 = true

x4 = true

witness

NP = Nondeterministic
Poly-time

The NP complexity class

Def. NP is the set of all decision problems for which you can verify a YES answer in poly-time
given a “witness” (a.k.a “proof”, “certificate”).
  
Ex 2 - integer factorization (decision): Given two integers and , does have a nontrivial
factor greater than ? 
 
 

 
Witness. A nontrivial factor of greater than .
Poly-time verification algorithm. Check that the witness is greater than and that it’s a
divisor of .

Note: For a problem to be in NP, it suffices to verify a purported witness for a YES answer.

・Doesn’t need to find the witness (e.g., a candidate factor is given).

・Doesn’t need verify a NO answer (e.g., no factor greater than).

x k x

k

x k

k

x

k

17

147573952589676412927 = 147573952589676412927x

a FACTOR instance

 = 100,000,000k

 time via long divisionO(n2)

193,707,721

witness

Intractability: quiz 2

Which decision version of longest path is in NP?

A. Given a graph G and an integer k, is the longest simple path in G of length at most k edges.

B. Given a graph G and an integer k, is the longest simple path in G of length at least k edges.

C. Both A and B.

D. Neither A nor B.

18

witness = path with at least k edges

unlikely to be in NP
(but remains unknown)

P vs. NP

P = set of problems whose solution can be computed efficiently (in poly-time).  
NP = set of problems whose solution can be verified efficiently (in poly-time).  

Observation. NP contains P

THE question. Does P = NP ?
Two possible worlds.  
 
 
 
 
 
 
 

Conjecture. P ≠ NP.
19

P = NP

P = NP
poly-time algorithms for

FACTOR, SAT, LONGEST-PATH, …

P
NP

intractable
problems

P ≠ NP

decision problems decision problems

brute-force search may be
the best we can do

e.g., perfect matching is in NP

$ 1M

any string serves as witness

why?

Why is P vs NP so central?

P vs NP is central in math, science, technology and beyond.
NP models many intellectual challenges humanity faces: Why would you attempt to solve a

problem if you cannot even tell if a solution is good?

Verifying a solution seems like it should be way easier than finding it! This suggests P ≠ NP.
 
Analogy for P vs NP. Creative genius vs. ordinary appreciation of creativity.

20

creative genius

domain problem witness/solution

mathematics is a conjecture correct? mathematical proof

engineering
given constraints (size, weight, energy),

find a design (bridge, medicine, computer) blueprint

science
given data on a phenomenon,

find a theory explaining it a scientific theory

the arts
write a beautiful poem / novel / pop song,

draw a beautiful picture
a poem, novel, pop song,

drawing
ordinary appreciation

Princeton computer science building

21

Princeton computer science building (closeup)

22

0
1

1
0

0

0

01
1

0
1

0

1

11
0

1
1

1

0

00
1

1
0

0

0

01
1

0
1

1

1

1

char ASCII binary

P 80 1010000
= 61 0111101
N 78 1001110
P 80 1010000
? 63 0111111

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣ dealing with intractabilityROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Bird’s-eye view

Goal. Classify problems according to computational requirements.
 
Goal′. Suppose we could (not) solve problem X efficiently.  
What else could we (not) solve efficiently?

24

“ Give me a lever long enough and a fulcrum on which to

 place it, and I shall move the world. ” — Archimedes

Poly-time reduction

Def. Problem poly-time reduces to problem if can be solved with:

・Polynomial number of elementary operations.

・Polynomial number of calls to .
 
 
 
 
 

Ex 1. MEDIAN poly-time reduces to SORT.
Ex 2. BIPARTITE-MATCHING poly-time reduces to MAX-FLOW.
 
Design algorithms. If poly-time reduces to and can be solved efficiently,  
then can be solved efficiently.

Establish intractability. If SAT is intractable and SAT poly-time reduces to , then is intractable.

X Y X

Y

X Y Y
X

Y Y
25

Cook reduction

instance I
of problem X

solution to I

algorithm for problem X

Algorithm
for problem Y

instance(s)
of problem Y

solutions to instances
of problem Y

X ⪯ Y

Poly-time reduction

Def. Problem poly-time reduces to problem if can be solved with:

・Polynomial number of elementary operations.

・Polynomial number of calls to .
 
 
 
 

 
 
Common mistake. Confuse poly-time reduces to with poly-time reduces to .

 reduces to SAT: is no harder than SAT (A solution to SAT implies a solution to)
SAT reduces to : is no easier than SAT (A solution to implies a solution to SAT)

X Y X

Y

X Y Y Y

X X X
X X X

26

“up to polynomials”

instance I
of problem X

solution to I

algorithm for problem X

Algorithm
for problem Y

instance(s)
of problem Y

solutions to instances
of problem Y

ILP. Given a system of linear inequalities, is there a solution where all variables take integer values?
 
 
 
 
 
 
 
 
 
 
 
Context. Cornerstone problem in operations research.
Remark. Finding a real-valued solution can be solved in poly-time (linear programming).

3x1 + 5x2 + 2x3 + x4 + 4x5 ≥ 10

5x1 + 2x2 + 4x4 + x5 ≤ 7

x1 + x3 + 2x4 ≤ 2

3x1 + 4x3 + 7x4 ≤ 7

x1 + x4 ≤ 1

x1 + x3 + x5 ≤ 1

Integer linear programming

27

linear inequalities

instance I

x1 = 0

x2 = 1

x3 = 0

x4 = 1

x5 = 1

solution S

SAT poly-time reduces to ILP

28

instance I
of problem X solution to I

algorithm for problem X

Algorithm
for problem Y

instance(s)
of problem Y

solutions to instances
of problem Y

here X = SAT and Y = ILP

SAT poly-time reduces to ILP

SAT. Given a system of m boolean equations in n variables, is there an assignment that satisfies all equations? 
 
 
 
 
 
 
 
ILP. Given a system of linear inequalities, is there an assignment where all variables take integer values?

 
 
 

29

(1 − y1) + y2 + y3 ≥ 1

y1 + (1 − y2) + y3 ≥ 1

(1 − y) + (1 − y2) + (1 − y3) y4 ≥ 1

(1 − y1) + (1 − y2) + + y4 ≥ 1

(1 − y2) + y3 + y4 ≥ 1

¬ x1 or x2 or x3 = true

x1 or ¬ x2 or x3 = true

¬ x1 or ¬ x2 or ¬ x3 = true

¬ x1 or ¬ x2 or or x4 = true

¬ x2 or x3 or x4 = true

0 ≤ y1 ≤ 1

0 ≤ y2 ≤ 1

0 ≤ y3 ≤ 1

0 ≤ y4 ≤ 1

yi = 0 ⇒ xi = false
yi = 1 ⇒ xi = true

instance I
of problem X solution to I

algorithm for problem X

Algorithm
for problem Y

instance(s)
of problem Y

solutions to instances
of problem Y

here X = SAT and Y = ILP

Intractability: quiz 3

Suppose that Problem X poly-time reduces to Problem Y.  
Which of the following can we infer?

A. If X can be solved in poly-time, then so can Y.

B. If Y can be solved in Θ(n3) time, then X can be solved in Θ(n3) time.

C. If Y can be solved in Θ(n3) time, then X can be solved in poly-time.

D. If X cannot be solved in Θ(n3) time, then Y cannot be solved in poly-time.

E. If Y cannot be solved in poly-time, then neither can X.

30

instance I
of problem X

solution to I

algorithm for problem X

Algorithm
for problem Y

instance(s)
of problem Y

solutions to instances
of problem Y

KNAPSACK BIN-PACKING

PARTITION

SUBSET-SUM

CLIQUE

SAT

ILP

HAMILTON-CYCLEEXACT-COVER

More poly-time reductions from SAT

31

3-COLOR VERTEX-COVER

INDEPENDENT-SET TSP

Conjecture. SAT is intractable.
Implication. All of these problems are intractable.

SAT poly-time
reduces to ILP

Richard Karp
(1972)

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣Dealing with intractabilityROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

NP-completeness

Def. A decision problem is NP-complete if

・It is in NP.

・All problems in NP poly-time to reduce to it.
 
 
 
Two worlds.

33

intuitively, the “hardest problems” in NP

P = NP = NPC

P = NP

P

NP

P ≠ NP

NPC

decision problems decision problems

Intractability: quiz 4

Suppose that X is NP-complete. What can you infer?

 I. X is in NP.
 II. If X can be solved in poly-time, then P = NP.
 III. If X cannot be solved in poly-time, then P ≠ NP.

A. I only.

B. II only.

C. I and II only.

D. I, II, and III.

Key property. An NP-complete problem can be solved in poly-time if and only if P = NP.

34

Cook–Levin theorem

Cook-Levin theorem. SAT is NP-complete.
Pioneering result in computer science!
 
Corollary. SAT can be solved in poly-time if and only if P = NP.  
 

Impact. To prove that a new problem is NP-complete, suffices to show that:

・ is in NP.

・SAT poly-time reduces to .

Y

Y

Y

35

Stephen Cook
(1971)

Leonid Levin
(1971)

KNAPSACK BIN-PACKING

PARTITION

SUBSET-SUM

CLIQUE

SAT

ILP

HAMILTON-CYCLEEXACT-COVER

Implications of Karp + Cook–Levin

3-COLOR VERTEX-COVER

INDEPENDENT-SET TSP

SAT poly-time
reduces to ILP

Richard Karp
(1972)

All of these problems are NP-complete; they are
manifestations of the same really hard problem.
If you can solve one in poly-time, you can solve all!  
No field-specific math insights are needed!

More NP-complete problems

37

6,000+ scientific
papers per year.

field of study NP-complete problem

Aerospace engineering optimal mesh partitioning for finite elements

Biology phylogeny reconstruction

Chemical engineering heat exchanger network synthesis

Chemistry protein folding

Civil engineering equilibrium of urban traffic flow

Economics computation of arbitrage in financial markets with friction

Electrical engineering VLSI layout

Environmental engineering optimal placement of contaminant sensors

Financial engineering minimum risk portfolio of given return

Game theory Nash equilibrium that maximizes social welfare

Mechanical engineering structure of turbulence in sheared flows

Medicine reconstructing 3d shape from biplane angiocardiogram

Operations research traveling salesperson problem, integer programming

Physics partition function of 3d Ising model

Politics Shapley–Shubik voting power

Pop culture versions of Sudoku, Checkers, Minesweeper, Tetris

Statistics optimal experimental design

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣ dealing with intractabilityROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dealing with intractability

39

Identifying intractable problems

Establishing NP-completeness through poly-time reduction is an important tool  
in guiding algorithm design efforts.
 
Q4′. How to convince yourself that a problem is (probably) intractable?
A. [hard way] Long futile search for a poly-time algorithm (as for SAT).
A. [easy way] Poly-time reduction from SAT (or any other NP-complete problem).
 
 
Caveat. Intricate reductions are common.

40

Approaches to dealing with intractability

Q. What to do when you identify an NP-complete problem?
A. Safe to assume it is intractable: no worst-case poly-time algorithm for all problem instances.
 
 
Q1. Must your algorithm always run fast?
Solve real-world instances. Backtracking, TSP, SAT.
 
 
Q2. Do you need the right/best solution or a good solution?
Approximation algorithms. Look for suboptimal solutions.
 
 
Q3. Can you use the problem’s hardness in your favor?
Leverage intractability. Cryptography.

41

Observations.

・Worst-case inputs may not occur for practical problems.

・Instances that do occur in practice may be easier to solve.

・Reasonable approach: relax the condition of guaranteed poly-time.

Boolean satisfiability.

・Chaff solves real-world instances with 10,000+ variables.

・Princeton senior independent work (!) in 2000.

Traveling salesperson problem.

・Concorde routinely solves large real-world instances.

・85,900-city instance solved in 2006.
 
Integer linear programming.

・CPLEX routinely solves large real-world instances.

・Routinely used in scientific and commercial applications.

Dealing with intractability: find solutions to real-world problem instances

42

TSP solution for 13,509 US cities

MAX-CUT (search): given a graph , find the cut with maximum number of crossing edges.
Approximate version: find a large cut.
 
 
 
 
 
 
 
 
Algorithm: take a uniformly random cut.
Expected size is ; random assignment size is with at least 50% probability.

G M

E/2 ≥ E/2 ≥ M/2

Dealing with intractability: approximation algorithms

43

can improve to .878M

3-SAT (search): given 3-variable equations on boolean variables, find satisfying truth assignment.
Approximate version: find assignment that satisfies many equations.
 
Algorithm: take a uniformly random assignment.  
Expected fraction of satisfied equations is .  

 
 
 
 
Remark. Some problems have approximation algorithms with arbitrary precision.  
For others, finding better approximations is also NP-complete!

n

7/8

Dealing with intractability: approximation algorithms

44

can’t be improved (unless P = NP)

Leveraging intractability: RSA cryptosystem

Modern cryptography applications.

・Secure a secret communication.

・Append a digital signature.

・Credit card transactions.

・…
 
RSA cryptosystem exploits intractability.

・To use: multiply/divide two -digit integers (easy).

・To break: factor a -digit integer (intractable?).
n

2n

45

Len AdelmanAdi ShamirRon Rivest

761838257287 × 193707721 147573952589676412927

multiply
(easy)

factor
(difficult)

Leveraging intractability: guiding scientific inquiry

1926.	 Ising introduces a mathematical model for ferromagnetism.
1930s.	 Closed form solution is a holy grail of statistical mechanics.
1944.	 Onsager finds closed form solution to 2D version in tour de force.
1950s.	 Feynman (and others) seek closed form solution to 3D version.
2000.	 Istrail shows that ISING-3D is NP-complete.
 
Bottom line. Search for a closed formula seems futile.

46

Summary

P. Set of problems solvable in poly-time.
NP. Set of problems checkable in poly-time.
NP-complete. “Hardest” problems in NP.

Use theory as a guide

・You will confront NP-complete problems in your career.

・An poly-time algorithm for an NP-complete problem would be  
a stunning scientific breakthrough (a proof that P = NP).

・It is safe to assume that P ≠ NP and that such problems are intractable.

・Identify these situations and proceed accordingly.

47

SAT, LONGEST-PATH, ILP, TSP, …

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

image source license

Gears Adobe Stock Education License

Finding a Needle in a Haystack Basic Vision

Galactic Computer Adobe Stock Education License

Taylor Swift Caricature Cory Jensen CC BY-NC-ND

Fans in a Stadium Adobe Stock Education License

P and NP cookbooks Futurama S2E10

Homer Simpson and P = NP Simpsons

Archimedes, Lever, and Fulcrum unknown

COS Building, Western Wall Kevin Wayne

Richard Karp Berkeley EECS

Stephen Cook U. Toronto

Leonid Levin Wikimedia CC BY-SA 3.0

Garey–Johnson Cartoon Updated Stefan Szeider CC BY 4.0

Cartoon of Turing Machine Tom Dunne

Warning sign Adobe Stock Education License

Glass with water Adobe Stock Education License

John Nash Wikimedia CC BY-SA 3.0

https://stock.adobe.com/images/cute-gears-cartoon-color-on-white-background/316321194
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.jolyon.co.uk/illustrations/basic-vision/
https://stock.adobe.com/images/outer-space-scene-with-planets-and-galaxies-generative-ai/582431892
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.deviantart.com/cor104/art/Taylor-Swift-122021057
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://stock.adobe.com/images/fans-im-fussball-stadion/211064337
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www2.eecs.berkeley.edu/Faculty/Homepages/karp.html
http://www.cs.toronto.edu/~sacook/
https://commons.wikimedia.org/wiki/File:LeonidLevin2010.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.ac.tuwien.ac.at/people/szeider/cartoon/
https://creativecommons.org/licenses/by/4.0/
https://stock.adobe.com/images/iso-7010-w001-general-warning-sign/135224923
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/glass-of-water-set-isolated/605180342
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://en.wikipedia.org/wiki/John_Forbes_Nash_Jr.#/media/File:John_Forbes_Nash,_Jr._by_Peter_Badge.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

A final thought

49

 “ Now my general conjecture is as follows: for almost all sufficiently
complex types of enciphering, […] the mean key computation length
increases exponentially with the length of the key […].

The nature of this conjecture is such that I cannot prove it […].
Nor do I expect it to be proven. ”

 — John Nash

