A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

4. GRAPHS AND DIGRAPHS II

> breadth-first search (in directed graphs)
> breadth-first search (in graphs)
» topological sort

» challenges

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Graph search overview

Tree traversal. Many ways to explore nodes in a binary tree.

* |norder: ACEHMRSX
e Preorder: SEACRHMX stack/recursion
 Postorder: CAMHREXS

e Level-order; S E XA RCHM

queue

Graph search. Many ways to explore vertices in a graph or digraph.

 DFS preorder: vertices in order of calls to dfs(G, v).

stack/recursion

* DFS postorder: vertices in order of returns from dfs(G, v).

* BFS order: vertices in increasing order of distance from s.

queue

4. GRAPHS AND DIGRAPHS I

> breadth-first search (in directed graphs)

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Shortest paths in a digraph

Problem. Find directed path from s to each other vertex that uses the fewest edges.

1 (3

4 0 6
directed paths from 0 to 6 shortest path from 0 to 6 (length = 4)
0—=2—-7—-4—-5—-1-3—6 0—=2—=7—=3—6

0—=4—-5—-1—-3—6
0—=2—-7—-3—>6
0—=2—-7—-0—2—-7—3—-26

AN

shortest path must be simple
(no repeated vertices)

Shortest paths in a digraph

Problem. Find directed path from s to each other vertex that uses the fewest edges.

Key idea. Visit vertices in increasing order of distance from s.

oWy @
0' - o

dist =0 dist =1 dist = 2 dist = 3 dist = 4 dist =5

How to implement? Store vertices to visit in a queue.

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

<« VISit vertex v

« Add to queue all unmarked vertices adjacent from v and mark them.

tinyDG2. txt

@ .@ V\‘g/E

5

T

O W Hh O FL WN
NN U1 W R NN O

graph G

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

<« VIsit vertex v

« Add to queue all unmarked vertices adjacent from v and mark them.

ol A W N = O
w N DD O O

4 4 4 4 4 -+
AN N W R = O

<O>) v edgeTo[] marked[] distTol]

vertices reachable from 0
(and shortest directed paths)

Breadth-first search

Repeat until queue is empty:
« Remove vertex v from queue.

« Add to queue all unmarked vertices adjacent from v and mark them.

BFS (from source vertex s)

Add vertex s to FIFO queue and mark s.
Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex w adjacent from v:

add w to queue and mark w

—

VIiSit vertex v

Breadth-first search: Java implementation

public class BreadthFirstDirectedPaths {
private boolean[]| marked;
private int[]| edgeTo;
private int[] distTo;

private void bfs(Digraph G, 1nt s) {
Queue<Integer> queue = new Queue<>();

queue.enqueue(s);
<

marked|[s]| = true;
distTo[s] = O;

while (!queue.isEmpty()) {

int v = queue.dequeue(); <
for (int w : G.adj(v)) {
if (!marked|[w]) {
queue.enqueue (w) ;

marked|w]| = true; .
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;

initialize queue of vertices to explore

also safe to stop as soon as all vertices marked

found new vertex w via edge v—w

https://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html

Breadth-first search properties

Proposition. In the worst case, BFS takes ©(E + V) time.

Pf. Each vertex reachable from s is visited once.

Proposition. BFS computes shortest paths from s.

Pf idea. BFS examines vertices in increasing order of distance (number of edges) from s.

digraph G dist =0 dist = 1 dist = 2 dist = 3

dist = 4

10

Graphs and digraphs Il: quiz 1

What could happen if we mark a vertex when it is dequeued (instead of enqueued)?

A. Doesn’t find a shortest path.
B. Takes exponential time.
C. Both A and B.

D. Neither A nor B.

while (!'queue.isEmpty()) {

int v = queue.dequeue():;

(marked[v] = true;)

for (int w : G.adj(v)) {
1f (!marked|[w]) {

a0 -4 K S=mik § 8 8 wns L]

queue.enqueue(w) ;

edgeTo[w]
distTo[w]

Vv,
distTo[v] + 1;

11

Single-target shortest paths

Given a digraph and a target vertex ¢, find shortest path from every vertex to ¢.

Ex. t=0
« Shortest path from 7 is 7-6—-0.
« Shortest path from 5 is 5->4->2-0.
« Shortest path from 12 is 12-»9->11->4->2-0.

@g// :

Q. How to implement single-target shortest paths algorithm?

CRG
5@
oo

12

Multiple-source shortest paths

Given a digraph and a set of source vertices, find shortest path from any vertex in the set
to every other vertex.

Ex. $={1,7,10}.
* Shortest path to 4 is 7>6—4.
* Shortest path to 5is 7-6—>0-5.
* Shortest path to 12 is 10—~12. @

iz

CRG
5@
BAG

needed for WordNet assignment

/

Q. How to implement multi-source shortest paths algorithm?

13

Graphs and digraphs Il: quiz 2

Suppose that you want to design a web crawler. Which algorithm should you use?

A. Depth-first search.

B. Breadth-first search.

C. Either A or B.

D. Neither A nor B.

15

Web crawler output

BFS crawl DFS crawl

://www.princeton.edu ://www.princeton.edu
://www.w3.0rg ://deimos.apple.com

://0Qgp.me ://www.youtube.com
://g1ving.princeton.edu : //www.google.com
://www.princetonartmuseum.org : //news.google.com
://www.goprincetontigers.com ://csi1.gstatic.com
://11brary.princeton.edu : //googlenewsblog.blogspot.com
://helpdesk.princeton.edu ://1abs.google.com
://tigernet.princeton.edu ://groups.google.com
://alumni.princeton.edu ://1mgl.blogblog.com
://gradschool.princeton.edu : //Teeds.feedburner.com
://vimeo.com : //buttons.googlesyndication.com

://princetonusg.com ://fusion.google.com
://artmuseum.princeton.edu ://1nsidesearch.blogspot.com
://Jjobs.princeton.edu : //agoogleaday.com

: //odoc.princeton.edu ://static.googleusercontent.com
://blogs.princeton.edu ://searchresearchl.blogspot.com
: //www . facebook.com : //feedburner.google.com

://twitter.com ://www.dot.ca.gov
://www.youtube.com : //www . TahoeRoads.com
://deimos.apple.com ://www.LakeTahoeTransit.com
://qeprize.org - //www. laketahoe.com
://en.wikipedia.org ://ethel.tahoeguide.com

Application: web crawler

Goal. Crawl web, starting from some root web page, say https://www.princeton.edu.

Solution.

 Choose root web page as source s.

 Maintain a queue of websites to explore.

« Maintain a set of marked websites.

 Dequeue the next website and enqueue

any unmarked websites to which it links.

Caveat. Industrial-strength web crawlers

use same basic idea, but more sophisticated

techniques.

17

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<>(); < queue of websites to crawl
SET<String> marked = new SET<>(); :

J O < set of marked websites
String root = "https://www.princeton.edu"; . .
queue . enqueue (root) : < start crawling from root website

marked.add(root)

while (!queue.isEmpty()) {

String v = queue.dequeue();
StdOut.println(v); read in raw HTML from next

In in = new In(v); website in queue
String input = in.readAll1();

String regexp = "https://C\\w+\\.)+(\\w+) "5 use regular expression to find all URLs
Pattern pattern = Pattern.compile(regexp); <

Matcher matcher = pattern.matcher(input):

in website of form https://xXxx.yyy.zzz
[crude pattern misses relative URLs]

while (matcher.find()) {
String w = matcher.group();

it (!'marked.contains(w)) {
marked.add(w) ;

queue.enqueue (W) ;) if unmarked,
1 mark and enqueue

4. GRAPHS AND DIGRAPHS I

> breadth-first search (in undirected graphs)
Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Application: routing in a communication network

Fewest number of hops in a communication network.

NCOLN
MIT=IPC

MOF’F;T “LBL

AMES BBN BBN
ap v DNCC

. HARVARD
i o (RUTGERS
STANFORD| AY"’TYMSHARE = ABERDEEN
FNWC
- RUCSE O
S NORSAR
ucsD KIRTLAND % JNBS
RAND | | (D) LONDON
\
usc-IS)

ARPANET 1970s

Breadth-first search in undirected graphs

Problem. Find path between s and each other vertex that uses fewest edges.

Solution. Use BFS. «—— pus now, for each undirected edge v—w:
v is adjacent to w and w is adjacent to v

BFS (from source vertex s)

Add vertex s to FIFO queue and mark s.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex w adjacent to v:

add w to queue and mark w

Proposition. BFS finds shortest paths between s and every other vertex in ©(E + V) time.

21

Application: Kevin Bacon numbers

THE ORACLE

OF BACON

-~
i,,, =~ -
. R e amm S L ol i
O S R R A Lo
- XA
. 2 3 A~
n__B e -
Tk 2 -
e
. TR e
e
o -

iHrilins
QACOIRY .

uuuuuuuuu

Endless Games board game

HEIEETE B d Chazelle h B ber of 3
. ernar azelle has a Bacon number of 3.

Credl.ts Find a different link

How it Works

Contact Us Bernard Chazelle |

Other stuff » was in

Guy and Madeline on a Park Bench (2009) | Destination
—
\l‘\:‘

{!
R

\

7:30 2= =

< Back

with

Anna Chazelle |

was in

La La Land (2016/1) |

with

Ryan Gosling |

was in

© 1999-2016 by Patrick Crazy, Stupid, Love. (2011) |
Reynolds. All rights reserved.

with

Kevin Bacon |

Different Challenge

https://oracleofbacon.org

SixDegrees of Hollywood

http://oracleofbacon.org

Kevin Bacon graph

* |Include one vertex for each performer and one for each movie.
 Connect a movie to all performers that appear in that movie.

« Compute shortest paths between s = Kevin Bacon and every other performer.

|
Dial M Grace
for Murder Kelly

_1To Catch | — z;g:
a Thief
/ N

/\
The Eagle
Has Landed
/ A} Teller
/

—1 Caligula

Patrick
Allen

\ /

Glenn The Stepford
Close Wives

Portrait
of a Lady

;o

John
Gielguld

—| Murder on the |— Footloose Whiplash
Orient Express cold Donald // \\
/ \ Mounta-in Sutherland
7\

Ray \\
McKinnon Joe Versus

\ // the Volcano

An American John Animal
Hamlet [__ Haunting Belushi House \ /// | \\
// | — Apollo 13

Vernon / \ \ , s
Dobtcheff Wild

Things

Black
Mass

a3
Herbert

\ | \ /
—1 Enigma __| Imitation Benedict
V4 Game Cumberbatch

Yves
|\ | / /] /,\ \ <Shane)
Kate ; . . — /Zaza
Winslet U

Eternal Sunshine
/1 \

Knightley

The Da
Vinci Code

Serretta
Wilson

of the Spotless
Mind
77 T |

/

4. GRAPHS AND DIGRAPHS I

Algorithms » topological sort

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Directed acyclic graphs

Directed acyclic graph (DAG). A digraph with no directed cycles.

DAG digraph
(no directed cycles) (but not a DAG)

Remark. DAGs are an important subclass of digraphs that arise in many applications.

25

WordNet DAG

Vertex = synset; edge = hypernym relationship.

event <
| / (
happemn g \ ;
occurrence . act
occurrent miracle human_action
natural_event /human_activity
change \ forfeit I \
alteration miracle forfeiture action group_action
modification

wee 7 TN

sacrifice /

resistance

harm transition increase change transgression

impairment T I

leap
hump
saltation

jump
leap

opposition

|

motion
demotion movement variation
move

N

locomotion
descent
travel

T T

run jump
running parachuting

f

dash
sprint

a subgraph of the WordNet DAG

no directed cycles

26

Family-tree- DAG

Vertex = person; edge = biological child.

Ferdinand Elizabeth Maximilian |
of Aragon of Castile Holy Roman

Mary of
Burgundy

. L

Manuel | Mary of Joanna | Philip |
of Portugal Aragon of Castile of Castile
John Ill Isabella of ~ therine Charles | Ferdinand |

of Portugal Portugal [Charles V Holy Roman

Emperor]

Mary Philip 1l Maria Maximilian Il Charles Il
of Portugal of Spain Holy Roman of Austria
i / i Emperor
Don Carlos Anne of
[Charles] Austria

Ph|I| Margarita Ferdmand [l
of Austna Holy Roman

Anna of Isabella of Christian Il
Bohemia Burgundy of Denmark

Holy Roman Emperor and Hungary

Albert V
Anne of Duke of Christina Francis |
Habsburg Bavaria of Denmark Duke of

I L

Maria Anna WililamV Renata of
of Bavaria Duke of Lorraine

Marla Anna
of Bavaria

Ph|I| Marla Anna Ferdlnand [l
of Spain Holy Roman

i Emperor

Mariana
of Austria

|

Charles |l

27

Bayesian networks

Vertex = variable; edge = conditional dependency.

@nic group @
Family history of CVD
PR
TC: HDL Ratio '
Ce o Cstainuse >
Antihype@

Systolic BP

Using DAGs for Investigating Causal Paths for Cardiovascular Disease

28

https://api.semanticscholar.org/CorpusID:44213386

Combinational circuits

Digital logical circuit. Vertex = logic gate; edge = wire.

>

B
J

)
L/

no directed cycles = combinational circuit

29

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

o v A W N RO

Math for CS

. Complexity Theory

Machine Learning

Intro to CS

. Cryptography
. Scientific Computing

. Algorithms

tasks

no directed cycles

7
@\;@9

2=

precedence constraint graph

[N

feasible schedule

30

Topological sort

Topological sort. Given a DAG, find a linear ordering of the vertices so that

for every edge v—w, v comes before w in the ordering.

T

edges in DAG define a “partial order” for vertices

no directed cycles é
0—5 0—>2 /
0-1 3-6 \ @
s 3o OSONO \
552 64 /
60 3-2 —(4) \
directed edges DAG

topological ordering: 3605214

31

Graphs and digraphs Il: quiz 3

Suppose that you want to topologically sort the vertices in a DAG.

Which graph-search algorithm should you use?

A. Depth-first search.
B. Breadth-first search.
C. Either A or B.

D. Neither A nor B.

6

DAG

S
[

@)

() O+

topological ordering: 3505214

32

Topological sort demo

 Run depth-first search.

« Return vertices in reverse DFS postorder.

|

order in which dfs () calls finish tinyDAG7.txt

7
11

0 5

0 2

oG 0
3 6

3 5

3 4

5 2

> @ 6 4

6 0

3 2

a directed acyclic graph

Topological sort demo

 Run depth-first search.

« Return vertices in reverse DFS postorder.

|

order in which dfs () calls finish

DFS postorder

4 1 2 5 0 6 3

@4 @ topological ordering

(reverse DFS postorder)

3 6 05 2 1 4

done

Depth-first search: reverse postorder

public class DepthFirstOrder {

private Stack<Integer> reversePostorder;

reversePostorder = new Stack<>():

for (Aintv=20; v <GVQO; v++)

it (!marked|v]) <
dfs(G, v);

reversePostorder.push(v) ;

public Iterable<Integer> reversePostorder()
return reversePostorder;

¥

run DES from all vertices

return vertices in
reverse DFES postorder

35

Topological sort in a DAG: intuition

Why is the reverse DFS postorder a topological ordering?

* First vertex in DFS postorder has outdegree O.

* Second vertex in DFS postorder can point only to first vertex.

N

(2)—(s)
Q}@

DFS postorder

4 1 2 5 0 6 3

topological ordering
(reverse DFS postorder)

3 6 05 2 1 4

36

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological ordering.

Pf. Consider any edge v—w. When dfs(v) is called:

dfs(0)
dfs (1)
dfs(4)
 Case 1: dfs(w) has already been called and returned. 4 done
1 done
- thus, w appears before v in DFS postorder dfs(2)
2 done
dfs(5)
» Case 2: dfs(w) has not yet been called. s done
- dfs(w) will get called directly or indirectly by dfs(v) 0 done
- 50, dfs(w) will return before dfs(v) returns
v=273 > de(B)
- thus, w appears before v in DFS postorder o |
(w=2,4,5) g
dfs(6)
 Case 3: dfs(w) has already been called, (008862) <
W =
but has not yet returned. 6 done
3 done

- function-call stack contains directed path from w to v

- adding edge v—w to that path would complete a directed cycle
- contradiction (it’s a DAG) done

37

Topological sort in a DAG: running time

Proposition. For any DAG, the DFS algorithm computes a topological ordering in ®(E + V) time.

Pf. For every vertex v, there is exactly one call to dfs(v).

|

critical that vertices are marked
(and never unmarked)

Q. What if we run algorithm on a digraph that is not a DAG?
A. Reverse DFS postorder is still well defined, but it won’t be a topological ordering.

38

Directed cycle detection

Proposition. A digraph has a topological ordering if and only if contains no directed cycle.
Pf.
* Directed cycle = topological ordering impossible.

 No directed cycle = reverse DFS postorder is a topological ordering.

0/9

A

a digraph with a directed cycle

(6=(® (7

Goal. Given a digraph, find a directed cycle (if one exists).

Solution. DFS. What else? See textbook/precept.

39

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

FAGE 3

DEPARTMENT COURSE DESCRIPTION PREREQS

INTERMEDIATE. COMPILER
DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

Remark. A directed cycle implies scheduling problem is infeasible.

40

https://xkcd.com/754

Directed cycle detection application: cyclic inheritance

The Java compiler does directed cycle detection.

public class A extends B { ~/cos226/graph> javac A.java
A.java:l: cyclic inheritance involving A

} public class A extends B { }
A

1 error

public class B extends C {

public class C extends A {

41

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does directed cycle detection.

@ O O Workbook1
< A B C D
1 "=B1 + 1" "=C1l + 1" "=A1 + 1"
2
3
4
5 '
6 Microsoft Excel cannot calculate a formula.
7 u Cell references in the formula refer to the formula's
e result, creating a circular reference. Try one of the
o following:
9 « |If you accidentally created the circular reference, click
10 OK. This will display the Circular Reference toolbar and
help for using it to correct your formula.
11 » To continue leaving the formula as it is, click Cancel.
12 (Cancel) (oK)
13
14
15
16
17
18

« <« » » | Sheetl _ Sheet2 _Sheet3

42

4. GRAPHS AND DIGRAPHS I

Algorithms

» challenges

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Graph-processing challenge 1

Problem. lIdentify connected components.

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.
C. Intractable.

D. No one knows.

I |
SO b WO LI =

A NN N O O
I

v id]]

S v A W N R O
_ O =)k = = O O

44

Graph-processing challenge 1

Problem. lIdentify connected components.

Particle detection. Given grayscale image of particles, identify “blobs.”
* Vertex: pixel.
 Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels.

45

Graph-processing challenge 2

Problem. Is a graph bipartite?

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.
C. Intractable.

D. No one knows.

A DN NP O O O O
I
SO U1 A W W O VI N

46

Graph-processing challenge 3

Problem. Is there a (non-simple) cycle that uses every edge exactly once?

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.

0-1-2-3-4-2-0-6-4-5-0
C. Intractable.

D. No one knows.

[I I [I I
O U1l A DN W NO ULIIN

>~ B W NDNPRERE O OO O
I

47

Graph-processing challenge 4

Problem. Is there a cycle that uses every vertex exactly once?

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.

0-5-3-4-6-2-1-0
C. Intractable.

D. No one knows.

[I I [I I
SO Ul U1 N OYN O ULT DN B

>~ W W DNRERE OOO O
I

48

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.

C. Intractable.

D. No one knows.

f(0) =0
f()=5
f@)="7
f3)=2
f)=4
f5)=1
f(6)=3
f(1)=6

49

Graph-processing challenge 6

Problem. Can you draw a graph in the plane with no crossing edges?

\

try it yourself at
https://www.jasondavies.com/planarity

How difficult?

A. Diligent algorithms student could do it.

B. Hire an expert.

C. Intractable.

D. No one knows

yes (a planar embedding)

R =R =R O O O
|
N o A OY U1 =

w W w NN DN
|
N O ol NI O B

50

https://www.jasondavies.com/planarity
http://planarity.net

Graph processing summary

BFS and DFS enables efficient solution of many (but not all) graph and digraph problems.

s-t path

& shortest s-t path 4 E+V
&) shortest directed cycle \'4 EV
< Euler cycle v E+V
E Hamilton cycle 9 1.657V
< bipartiteness (odd cycle) \'4 4 E+V
& connected components v v E+V
= strong components v E+V
@ planarity v E+V
"@’ graph isomorphism 9 cln®V

Graph-processing summary: algorithms of the week

single-source
reachability

shortest paths

topological sort 0@\00000 OJOIDROE®

FREERRE

DFS/BFS

BFS

DFS

Credits

iImage source license
ARPANET Wikimedia CCBY-SA4.0
Oracle of Bacon oracleofbacon.org
Kevin Bacon Game Endless Games
Six Degrees of Hollywood Paradox Apps

Ancestry of King Charles 11 Waterford Treasures

Habsburg Coat of Arms Wikimedia CCBY-SA3.0

Bayesian Network Thornley et. al

Lecture Slides © Copyright 2023 Robert Sedgewick and Kevin Wayne

https://commons.wikimedia.org/wiki/File:Arpanet_in_the_1970s.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://oracleofbacon.org
https://www.amazon.com/Six-Degrees-Kevin-Bacon-Game/dp/B00000JIKJ
https://apps.apple.com/us/app/six-degrees-of-hollywood/id1262835314
https://www.waterfordtreasures.com/its-about-time-the-man-who-accidentally-became-a-clock-maker-to-the-king-of-spain/
https://commons.wikimedia.org/wiki/File:Arms_of_Counts_of_Habsbourg.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.semanticscholar.org/paper/Using-Directed-Acyclic-Graphs-for-Investigating-for-Thornley-Marshall/5c4e1666532aeeca10b2312358c53565a7285121

BFS visualization (by Gerry Jenkins)

https://www.youtube.com/watch?v=x-VTfcmrLEQ

https://algs4.cs.princeton.edu/41undirected/Graph.java.html

