
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/1/24 10:26  AM

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Running time

3

how many times
do you have to turn

the crank?

“ As soon as an Analytical Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will then arise—By what course of calculation can these results be arrived
 at by the machine in the shortest time ? ” — Charles Babbage (1864)

https://vimeo.com/49080293

https://vimeo.com/49080293

Running time

4

Ada Lovelace’s algorithm
to compute Bernoulli numbers

on Analytic Engine (1843)

“ As soon as an Analytical Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will then arise—By what course of calculation can these results be arrived
 at by the machine in the shortest time ? ” — Charles Babbage (1864)

An algorithmic success story

N-body simulation.

・Simulate gravitational interactions among n bodies.

・Applications: cosmology, fluid dynamics, semiconductors, …

・Brute force: Θ(n2) steps.

・Barnes–Hut algorithm: Θ(n log n) steps, enables new research.

5

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear
8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

limit on
available time

Andrew Appel  
PU ’81

Q1. Will my program be able to solve a large practical input?
Q2. If not, how might I understand its performance characteristics so as to improve it?
 
 
 
 
 
 
 
 
 
 
 
 
 
Our approach. Combination of experiments and mathematical modeling.

The challenge

6

Why is my program so slow? Why does it run out of memory?

Example: 3-SUM

3-SUM. Given n distinct integers, how many triples sum to exactly zero?
 
 
 
 
 
 
 
Context. Connected with problems in computational geometry.

7

~/cos226/3sum> more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

~/cos226/3sum> java ThreeSum 8ints.txt
4

a[i] a[j] a[k] sum

1 30 −40 10 0 ✔

2 30 −20 −10 0 ✔

3 −40 40 0 0 ✔

4 −10 0 10 0 ✔

3-SUM: brute-force algorithm

8

public class ThreeSum {

 public static int count(int[] a) {
 int n = a.length;
 int count = 0;
 for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;
 return count;
 }

 public static void main(String[] args) {
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 StdOut.println(count(a));
 }
}

check distinct triples

for simplicity,
ignore integer overflow

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Measuring the running time

Running time. Run the program for inputs of varying size; measure running time.  

Observation. The running time T (n) grows as a function of the input size n.

~/cos226/analysis> java ThreeSum 1Kints.txt
70

~/cos226/analysis> java ThreeSum 2Kints.txt
528

~/cos226/analysis> java ThreeSum 3Kints.txt
1670

tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick

10

Measuring the running time

Running time. Run the program for inputs of varying size; measure running time.

11

† Apple M2 Pro with 32 GB memory
 running OpenJDK 11 on MacOS Ventura

n time (seconds) †

1,000 0.21

1,500 0.71

2,000 1.63

2,500 3.11

3,000 5.43

4,000 12.8

5,000 25.0

7,500 84.4

10,000 199.3

Data analysis: standard plot

Standard plot. Plot running time T (n) vs. input size n.
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypothesis. The running time obeys a power law: T(n) = a × nb seconds.

Questions. How to validate hypothesis? How to estimate constants a and b ?
12

n time (seconds) †

1,000 0.21

1,500 0.71

2,000 1.63

2,500 3.11

3,000 5.43

4,000 12.8

5,000 25.0

7,500 84.4

10,000 199.3

ru
nn

in
g

tim
e

 T
(n

)

50

100

150

200

input size n

2K 4K 6K 8K 10K

Doubling test: estimating the exponent b

Doubling test. Run program, doubling the size of the input.

・Assume running time satisfies the “power law” T (n) = a × nb.

・Estimate b = log2 ratio.

13

n time (seconds) † ratio log2 ratio

500 0.05 – –

1,000 0.21 4.20 2.07

2,000 1.63 7.76 2.96

4,000 12.8 7.85 2.97

8,000 103.1 8.05 3.01

16,000 819.0 7.94 2.99

seems to converge to a constant b ≈ 3.0

log2 (103.1 / 12.8) = 3.01

T (n)

T (n/2)
=

anb

a(n/2)b

= 2b

T (n)

T (n/2)
=

anb

a(n/2)b

= 2b

T (n)

T (n/2)
=

anb

a(n/2)b

= 2b

=) b = log2
T (n)

T (n/2)

<latexit sha1_base64="2ERZfSkOaQSkbeVo7TqIVmF7wC0=">AAACXXicbVBNSwMxEE3X7++qBw9egkVQkLpbBSsiCF48KlgVuqVk09kamk2WZFZalv4Qf41X/Qme/Ctmaw+2OpDM481MXuZFqRQWff+z5M3Mzs0vLC4tr6yurW+UN7cerM4MhwbXUpuniFmQQkEDBUp4Sg2wJJLwGPWui/rjCxgrtLrHQQqthHWViAVn6Kh2+SQUidMBS8OL8IJGLl26HErdbddoeETD2DCe3x+ow2FxH9cOh+1yxa/6o6B/QTAGFTKO2/ZmaSvsaJ4loJBLZm0z8FNs5cyg4BKGy2FmIWW8x7rQdFCxBGwrH203pPuO6dBYG3cU0hH7eyJnibWDJHKdCcNnO10ryP9qzQzjeisXKs0QFP8RijNJUdPCKtoRBjjKgQOMG+H+Svkzc3agM3RCZfR2Cnxik7yfKcF1B6ZYiX00rHAxmPbsL3ioVYPT6vndaeWqPvZzkeySPXJAAnJGrsgNuSUNwskreSPv5KP05c15q976T6tXGs9sk4nwdr4BDpe1jA==</latexit>

why the log2 ratio works

Doubling test: estimating the leading coefficient a

Doubling test. Run program, doubling the size of the input.

・Assume running time satisfies T (n) = a × nb.

・Estimate b = log2 ratio.

・Estimate a by solving T(n) = a × nb for a sufficiently large value of n.
 
 
 
 
 
 
 
 
 
 
 
Hypothesis. Running time is about 2.00 × 10−10 × n3 seconds.

14

819.0 = a × 16,0003 ⇒ a = 2.00 × 10−10

n time (seconds) † ratio log2 ratio

500 0.05 – –

1,000 0.21 4.20 2.07

2,000 1.63 7.76 2.96

4,000 12.8 7.85 2.97

8,000 103.1 8.05 3.01

16,000 819.0 7.94 2.99

Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size n = 96,000.

A. 39 seconds

B. 52 seconds

C. 117 seconds

D. 350 seconds

15

n time (seconds)

1,000 0.02

2,000 0.05

4,000 0.20

8,000 0.81

16,000 3.25

32,000 13.01

Order of growth

Hypothesis. Running times on different computers differ by a constant factor.
 
Note. That factor can be several orders of magnitude.

16

1970s
(VAX-11/780)

2020s
(Macbook Pro M2)

10,000× faster

Experimental algorithmics

System independent effects.

・Algorithm.

・Input data.
 
 
System dependent effects.

・Hardware: CPU, memory, cache, …

・Software: compiler, interpreter, garbage collector, …

・System: operating system, network, other apps, …
 
 
 
 
 
 
Bad news. Sometimes difficult to get accurate measurements.

17

determines leading coefficient a
in power law T(n) = a × nb

determines exponent b
in power law T(n) = a × nb

�2012suecahalane!

By!
Sue Cahalane!

Science Teacher!
Grades PK - 4!

Context: the scientific method

Experimental algorithmics is an example of the scientific method.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Good news. Experiments are easier and cheaper than other sciences.

18

Physics
(1 experiment)

Chemistry
(1 experiment)

Biology
(1 experiment)

Computer Science
(1 million experiments)

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Mathematical models for running time

Total running time: sum of frequency × cost for all operations.

・Frequency depends on algorithm and input data.

・Cost depends on CPU, compiler, operating system, …
 
 
 
 
 
 
 
 
 
 
 
 
Warning. No general-purpose method (e.g., halting problem).

20

© 2023 The New York Times Company

NYTCo Contact Us Accessibility Work with us Advertise T Brand Studio Your Ad Choices Privacy Policy Terms of Service Terms of Sale Site Map Help Subscriptions

Donald Knuth at his home in Stanford, Calif. He is a notorious perfectionist and has offered
to pay a reward to anyone who finds a mistake in any of his books. Brian Flaherty for The

New York Times

By Siobhan Roberts

Dec. 17, 2018

For half a century, the Stanford computer scientist Donald Knuth,

who bears a slight resemblance to Yoda — albeit standing 6-foot-4

and wearing glasses — has reigned as the spirit-guide of the

algorithmic realm.

He is the author of “The Art of Computer Programming,” a

continuing four-volume opus that is his life’s work. The first volume

debuted in 1968, and the collected volumes (sold as a boxed set for

about $250) were included by American Scientist in 2013 on its list

of books that shaped the last century of science — alongside a

special edition of “The Autobiography of Charles Darwin,” Tom

Wolfe’s “The Right Stuff,” Rachel Carson’s “Silent Spring” and

monographs by Albert Einstein, John von Neumann and Richard

Feynman.

With more than one million copies in print, “The Art of Computer

Programming” is the Bible of its field. “Like an actual bible, it is

long and comprehensive; no other book is as comprehensive,” said

Peter Norvig, a director of research at Google. After 652 pages,

volume one closes with a blurb on the back cover from Bill Gates:

“You should definitely send me a résumé if you can read the whole

thing.”

The volume opens with an excerpt from “McCall’s Cookbook”:

Here is your book, the one your thousands of letters have asked

us to publish. It has taken us years to do, checking and

rechecking countless recipes to bring you only the best, only the

interesting, only the perfect.

Inside are algorithms, the recipes that feed the digital age —

although, as Dr. Knuth likes to point out, algorithms can also be

found on Babylonian tablets from 3,800 years ago. He is an

esteemed algorithmist; his name is attached to some of the field’s

most important specimens, such as the Knuth-Morris-Pratt string-

searching algorithm. Devised in 1970, it finds all occurrences of a

given word or pattern of letters in a text — for instance, when you

hit Command+F to search for a keyword in a document.

[Like the Science Times page on Facebook. | Sign up for the

Science Times newsletter.]

Now 80, Dr. Knuth usually dresses like the youthful geek he was

when he embarked on this odyssey: long-sleeved T-shirt under a

short-sleeved T-shirt, with jeans, at least at this time of year. In

those early days, he worked close to the machine, writing “in the

raw,” tinkering with the zeros and ones.

“Knuth made it clear that the system could actually be understood

all the way down to the machine code level,” said Dr. Norvig.

Nowadays, of course, with algorithms masterminding (and

undermining) our very existence, the average programmer no

longer has time to manipulate the binary muck, and works instead

with hierarchies of abstraction, layers upon layers of code — and

often with chains of code borrowed from code libraries. But an elite

class of engineers occasionally still does the deep dive.

“Here at Google, sometimes we just throw stuff together,” Dr.

Norvig said, during a meeting of the Google Trips team, in

Mountain View, Calif. “But other times, if you’re serving billions of

users, it’s important to do that efficiently. A 10-per-cent

improvement in efficiency can work out to billions of dollars, and in

order to get that last level of efficiency, you have to understand

what’s going on all the way down.”

Or, as Andrei Broder, a distinguished scientist at Google and one of

Dr. Knuth’s former graduate students, explained during the

meeting: “We want to have some theoretical basis for what we’re

doing. We don’t want a frivolous or sloppy or second-rate

algorithm. We don’t want some other algorithmist to say, ‘You guys

are morons.’”

The Google Trips app, created in 2016, is an “orienteering

algorithm” that maps out a day’s worth of recommended touristy

activities. The team was working on “maximizing the quality of the

worst day” — for instance, avoiding sending the user back to the

same neighborhood to see different sites. They drew inspiration

from a 300-year-old algorithm by the Swiss mathematician

Leonhard Euler, who wanted to map a route through the Prussian

city of Königsberg that would cross each of its seven bridges only

once. Dr. Knuth addresses Euler’s classic problem in the first

volume of his treatise. (He once applied Euler’s method in coding a

computer-controlled sewing machine.)

A New Generation of Chatbots

Following Dr. Knuth’s doctrine helps to ward off moronry. He is

known for introducing the notion of “literate programming,”

emphasizing the importance of writing code that is readable by

humans as well as computers — a notion that nowadays seems

almost twee. Dr. Knuth has gone so far as to argue that some

computer programs are, like Elizabeth Bishop’s poems and Philip

Roth’s “American Pastoral,” works of literature worthy of a Pulitzer.

He is also a notorious perfectionist. Randall Munroe, the xkcd

cartoonist and author of “Thing Explainer,” first learned about Dr.

Knuth from computer-science people who mentioned the reward

money Dr. Knuth pays to anyone who finds a mistake in any of his

books. As Mr. Munroe recalled, “People talked about getting one of

those checks as if it was computer science’s Nobel Prize.”

Dr. Knuth’s exacting standards, literary and otherwise, may

explain why his life’s work is nowhere near done. He has a wager

with Sergey Brin, the co-founder of Google and a former student

(to use the term loosely), over whether Mr. Brin will finish his

Ph.D. before Dr. Knuth concludes his opus.

The dawn of the algorithm

At age 19, Dr. Knuth published his first technical paper, “The

Potrzebie System of Weights and Measures,” in Mad magazine. He

became a computer scientist before the discipline existed, studying

mathematics at what is now Case Western Reserve University in

Cleveland. He looked at sample programs for the school’s IBM 650

mainframe, a decimal computer, and, noticing some inadequacies,

rewrote the software as well as the textbook used in class. As a

side project, he ran stats for the basketball team, writing a

computer program that helped them win their league — and

earned a segment by Walter Cronkite called “The Electronic

Coach.”

During summer vacations, Dr. Knuth made more money than

professors earned in a year by writing compilers. A compiler is like

a translator, converting a high-level programming language

(resembling algebra) to a lower-level one (sometimes arcane

binary) and, ideally, improving it in the process. In computer

science, “optimization” is truly an art, and this is articulated in

another Knuthian proverb: “Premature optimization is the root of

all evil.”

Eventually Dr. Knuth became a compiler himself, inadvertently

founding a new field that he came to call the “analysis of

algorithms.” A publisher hired him to write a book about compilers,

but it evolved into a book collecting everything he knew about how

to write for computers — a book about algorithms.

“By the time of the Renaissance, the origin of this word was in

doubt,” it began. “And early linguists attempted to guess at its

derivation by making combinations like algiros [painful] +

arithmos [number].’” In fact, Dr. Knuth continued, the namesake is

the 9th-century Persian textbook author Abū ‘Abd Allāh
Muhammad ibn Mūsā al-Khwārizmī, Latinized as Algorithmi.

Never one for half measures, Dr. Knuth went on a pilgrimage in

1979 to al-Khwārizmī’s ancestral homeland in Uzbekistan.

When Dr. Knuth started out, he intended to write a single work.

Soon after, computer science underwent its Big Bang, so he

reimagined and recast the project in seven volumes. Now he metes

out sub-volumes, called fascicles. The next installation, “Volume 4,

Fascicle 5,” covering, among other things, “backtracking” and

“dancing links,” was meant to be published in time for Christmas. It

is delayed until next April because he keeps finding more and more

irresistible problems that he wants to present.

In order to optimize his chances of getting to the end, Dr. Knuth has

long guarded his time. He retired at 55, restricted his public

engagements and quit email (officially, at least). Andrei Broder

recalled that time management was his professor’s defining

characteristic even in the early 1980s.

Dr. Knuth typically held student appointments on Friday mornings,

until he started spending his nights in the lab of John McCarthy, a

founder of artificial intelligence, to get access to the computers

when they were free. Horrified by what his beloved book looked

like on the page with the advent of digital publishing, Dr. Knuth had

gone on a mission to create the TeX computer typesetting system,

which remains the gold standard for all forms of scientific

communication and publication. Some consider it Dr. Knuth’s

greatest contribution to the world, and the greatest contribution to

typography since Gutenberg.

This decade-long detour took place back in the age when

computers were shared among users and ran faster at night while

most humans slept. So Dr. Knuth switched day into night, shifted

his schedule by 12 hours and mapped his student appointments to

Fridays from 8 p.m. to midnight. Dr. Broder recalled, “When I told

my girlfriend that we can’t do anything Friday night because

Friday night at 10 I have to meet with my adviser, she thought,

‘This is something that is so stupid it must be true.’”

When Knuth chooses to be physically present, however, he is 100-

per-cent there in the moment. “It just makes you happy to be

around him,” said Jennifer Chayes, a managing director of

Microsoft Research. “He’s a maximum in the community. If you

had an optimization function that was in some way a combination

of warmth and depth, Don would be it.”

Sunday with the algorithmist

Dr. Knuth lives in Stanford, and allowed for a Sunday visitor. That

he spared an entire day was exceptional — usually his availability

is “modulo nap time,” a sacred daily ritual from 1 p.m. to 4 p.m. He

started early, at Palo Alto’s First Lutheran Church, where he

delivered a Sunday school lesson to a standing-room-only crowd.

Driving home, he got philosophical about mathematics.

“I’ll never know everything,” he said. “My life would be a lot worse

if there was nothing I knew the answers about, and if there was

nothing I didn’t know the answers about.” Then he offered a tour of

his “California modern” house, which he and his wife, Jill, built in

1970. His office is littered with piles of U.S.B. sticks and adorned

with Valentine’s Day heart art from Jill, a graphic designer. Most

impressive is the music room, built around his custom-made, 812-

pipe pipe organ. The day ended over beer at a puzzle party.

Puzzles and games — and penning a novella about surreal

numbers, and composing a 90-minute multimedia musical pipe-

dream, “Fantasia Apocalyptica” — are the sorts of things that

really tickle him. One section of his book is titled, “Puzzles Versus

the Real World.” He emailed an excerpt to the father-son team of

Martin Demaine, an artist, and Erik Demaine, a computer scientist,

both at the Massachusetts Institute of Technology, because Dr.

Knuth had included their “algorithmic puzzle fonts.”

“I was thrilled,” said Erik Demaine. “It’s an honor to be in the

book.” He mentioned another Knuth quotation, which serves as the

inspirational motto for the biannual “FUN with Algorithms”

conference: “Pleasure has probably been the main goal all along.”

But then, Dr. Demaine said, the field went and got practical.

Engineers and scientists and artists are teaming up to solve real-

world problems — protein folding, robotics, airbags — using the

Demaines’s mathematical origami designs for how to fold paper

and linkages into different shapes.

Of course, all the algorithmic rigmarole is also causing real-world

problems. Algorithms written by humans — tackling harder and

harder problems, but producing code embedded with bugs and

biases — are troubling enough. More worrisome, perhaps, are the

algorithms that are not written by humans, algorithms written by

the machine, as it learns.

Programmers still train the machine, and, crucially, feed it data.

(Data is the new domain of biases and bugs, and here the bugs and

biases are harder to find and fix). However, as Kevin Slavin, a

research affiliate at M.I.T.’s Media Lab said, “We are now writing

algorithms we cannot read. That makes this a unique moment in

history, in that we are subject to ideas and actions and efforts by a

set of physics that have human origins without human

comprehension.” As Slavin has often noted, “It’s a bright future, if

you’re an algorithm.”

All the more so if you’re an algorithm versed in Knuth. “Today,

programmers use stuff that Knuth, and others, have done as

components of their algorithms, and then they combine that

together with all the other stuff they need,” said Google’s Dr.

Norvig.

“With A.I., we have the same thing. It’s just that the combining-

together part will be done automatically, based on the data, rather

than based on a programmer’s work. You want A.I. to be able to

combine components to get a good answer based on the data. But

you have to decide what those components are. It could happen

that each component is a page or chapter out of Knuth, because

that’s the best possible way to do some task.”

Lucky, then, Dr. Knuth keeps at it. He figures it will take another 25

years to finish “The Art of Computer Programming,” although that

time frame has been a constant since about 1980. Might the

algorithm-writing algorithms get their own chapter, or maybe a

page in the epilogue? “Definitely not,” said Dr. Knuth.

“I am worried that algorithms are getting too prominent in the

world,” he added. “It started out that computer scientists were

worried nobody was listening to us. Now I’m worried that too

many people are listening.”

A version of this article appears in print on Dec. 18, 2018, Section D, Page 1 of the New York edition with the headline:
The Yoda of Silicon Valley. Order Reprints | Today’s Paper | Subscribe

READ 155 COMMENTS

Give this article 155

Dr. Knuth at the California Institute of Technology, where
he received his Ph.D. in 1963. Jill Knuth

Dr. Knuth in 1981, looking at the 1957 Mad magazine issue that
contained his first technical article. He was 19 when it was
published. Jill Knuth

“The Art of Computer Programming,” volumes 1-4. “Send me a
résumé if you can read the whole thing,” Bill Gates wrote in a
blurb. Brian Flaherty for The New York Times

Dr. Knuth discussing typefaces with Hermann Zapf, the type designer. Many consider Dr. Knuth's work on
the TeX computer typesetting system to be the greatest contribution to typography since
Gutenberg. Bettmann, via Getty Images

Dr. Knuth at his desk at home in 1999. Jill Knuth A few notes. Brian Flaherty for The New York Times

Give this article 155

PROFILES IN SCIENCE

Donald Knuth, master of algorithms, reflects on 50 years
of his opus-in-progress, “The Art of Computer

Programming.”

The Yoda of Silicon
Valley

Account

A brave new world. A new crop of chatbots powered by artificial intelligence

has ignited a scramble to determine whether the technology could upend the

economics of the internet, turning today’s powerhouses into has-beens and

creating the industry’s next giants. Here are the bots to know:

© 2023 The New York Times Company

NYTCo Contact Us Accessibility Work with us Advertise T Brand Studio Your Ad Choices Privacy Policy Terms of Service Terms of Sale Site Map Help Subscriptions

Donald Knuth at his home in Stanford, Calif. He is a notorious perfectionist and has offered
to pay a reward to anyone who finds a mistake in any of his books. Brian Flaherty for The

New York Times

By Siobhan Roberts

Dec. 17, 2018

For half a century, the Stanford computer scientist Donald Knuth,

who bears a slight resemblance to Yoda — albeit standing 6-foot-4

and wearing glasses — has reigned as the spirit-guide of the

algorithmic realm.

He is the author of “The Art of Computer Programming,” a

continuing four-volume opus that is his life’s work. The first volume

debuted in 1968, and the collected volumes (sold as a boxed set for

about $250) were included by American Scientist in 2013 on its list

of books that shaped the last century of science — alongside a

special edition of “The Autobiography of Charles Darwin,” Tom

Wolfe’s “The Right Stuff,” Rachel Carson’s “Silent Spring” and

monographs by Albert Einstein, John von Neumann and Richard

Feynman.

With more than one million copies in print, “The Art of Computer

Programming” is the Bible of its field. “Like an actual bible, it is

long and comprehensive; no other book is as comprehensive,” said

Peter Norvig, a director of research at Google. After 652 pages,

volume one closes with a blurb on the back cover from Bill Gates:

“You should definitely send me a résumé if you can read the whole

thing.”

The volume opens with an excerpt from “McCall’s Cookbook”:

Here is your book, the one your thousands of letters have asked

us to publish. It has taken us years to do, checking and

rechecking countless recipes to bring you only the best, only the

interesting, only the perfect.

Inside are algorithms, the recipes that feed the digital age —

although, as Dr. Knuth likes to point out, algorithms can also be

found on Babylonian tablets from 3,800 years ago. He is an

esteemed algorithmist; his name is attached to some of the field’s

most important specimens, such as the Knuth-Morris-Pratt string-

searching algorithm. Devised in 1970, it finds all occurrences of a

given word or pattern of letters in a text — for instance, when you

hit Command+F to search for a keyword in a document.

[Like the Science Times page on Facebook. | Sign up for the

Science Times newsletter.]

Now 80, Dr. Knuth usually dresses like the youthful geek he was

when he embarked on this odyssey: long-sleeved T-shirt under a

short-sleeved T-shirt, with jeans, at least at this time of year. In

those early days, he worked close to the machine, writing “in the

raw,” tinkering with the zeros and ones.

“Knuth made it clear that the system could actually be understood

all the way down to the machine code level,” said Dr. Norvig.

Nowadays, of course, with algorithms masterminding (and

undermining) our very existence, the average programmer no

longer has time to manipulate the binary muck, and works instead

with hierarchies of abstraction, layers upon layers of code — and

often with chains of code borrowed from code libraries. But an elite

class of engineers occasionally still does the deep dive.

“Here at Google, sometimes we just throw stuff together,” Dr.

Norvig said, during a meeting of the Google Trips team, in

Mountain View, Calif. “But other times, if you’re serving billions of

users, it’s important to do that efficiently. A 10-per-cent

improvement in efficiency can work out to billions of dollars, and in

order to get that last level of efficiency, you have to understand

what’s going on all the way down.”

Or, as Andrei Broder, a distinguished scientist at Google and one of

Dr. Knuth’s former graduate students, explained during the

meeting: “We want to have some theoretical basis for what we’re

doing. We don’t want a frivolous or sloppy or second-rate

algorithm. We don’t want some other algorithmist to say, ‘You guys

are morons.’”

The Google Trips app, created in 2016, is an “orienteering

algorithm” that maps out a day’s worth of recommended touristy

activities. The team was working on “maximizing the quality of the

worst day” — for instance, avoiding sending the user back to the

same neighborhood to see different sites. They drew inspiration

from a 300-year-old algorithm by the Swiss mathematician

Leonhard Euler, who wanted to map a route through the Prussian

city of Königsberg that would cross each of its seven bridges only

once. Dr. Knuth addresses Euler’s classic problem in the first

volume of his treatise. (He once applied Euler’s method in coding a

computer-controlled sewing machine.)

A New Generation of Chatbots

Following Dr. Knuth’s doctrine helps to ward off moronry. He is

known for introducing the notion of “literate programming,”

emphasizing the importance of writing code that is readable by

humans as well as computers — a notion that nowadays seems

almost twee. Dr. Knuth has gone so far as to argue that some

computer programs are, like Elizabeth Bishop’s poems and Philip

Roth’s “American Pastoral,” works of literature worthy of a Pulitzer.

He is also a notorious perfectionist. Randall Munroe, the xkcd

cartoonist and author of “Thing Explainer,” first learned about Dr.

Knuth from computer-science people who mentioned the reward

money Dr. Knuth pays to anyone who finds a mistake in any of his

books. As Mr. Munroe recalled, “People talked about getting one of

those checks as if it was computer science’s Nobel Prize.”

Dr. Knuth’s exacting standards, literary and otherwise, may

explain why his life’s work is nowhere near done. He has a wager

with Sergey Brin, the co-founder of Google and a former student

(to use the term loosely), over whether Mr. Brin will finish his

Ph.D. before Dr. Knuth concludes his opus.

The dawn of the algorithm

At age 19, Dr. Knuth published his first technical paper, “The

Potrzebie System of Weights and Measures,” in Mad magazine. He

became a computer scientist before the discipline existed, studying

mathematics at what is now Case Western Reserve University in

Cleveland. He looked at sample programs for the school’s IBM 650

mainframe, a decimal computer, and, noticing some inadequacies,

rewrote the software as well as the textbook used in class. As a

side project, he ran stats for the basketball team, writing a

computer program that helped them win their league — and

earned a segment by Walter Cronkite called “The Electronic

Coach.”

During summer vacations, Dr. Knuth made more money than

professors earned in a year by writing compilers. A compiler is like

a translator, converting a high-level programming language

(resembling algebra) to a lower-level one (sometimes arcane

binary) and, ideally, improving it in the process. In computer

science, “optimization” is truly an art, and this is articulated in

another Knuthian proverb: “Premature optimization is the root of

all evil.”

Eventually Dr. Knuth became a compiler himself, inadvertently

founding a new field that he came to call the “analysis of

algorithms.” A publisher hired him to write a book about compilers,

but it evolved into a book collecting everything he knew about how

to write for computers — a book about algorithms.

“By the time of the Renaissance, the origin of this word was in

doubt,” it began. “And early linguists attempted to guess at its

derivation by making combinations like algiros [painful] +

arithmos [number].’” In fact, Dr. Knuth continued, the namesake is

the 9th-century Persian textbook author Abū ‘Abd Allāh
Muhammad ibn Mūsā al-Khwārizmī, Latinized as Algorithmi.

Never one for half measures, Dr. Knuth went on a pilgrimage in

1979 to al-Khwārizmī’s ancestral homeland in Uzbekistan.

When Dr. Knuth started out, he intended to write a single work.

Soon after, computer science underwent its Big Bang, so he

reimagined and recast the project in seven volumes. Now he metes

out sub-volumes, called fascicles. The next installation, “Volume 4,

Fascicle 5,” covering, among other things, “backtracking” and

“dancing links,” was meant to be published in time for Christmas. It

is delayed until next April because he keeps finding more and more

irresistible problems that he wants to present.

In order to optimize his chances of getting to the end, Dr. Knuth has

long guarded his time. He retired at 55, restricted his public

engagements and quit email (officially, at least). Andrei Broder

recalled that time management was his professor’s defining

characteristic even in the early 1980s.

Dr. Knuth typically held student appointments on Friday mornings,

until he started spending his nights in the lab of John McCarthy, a

founder of artificial intelligence, to get access to the computers

when they were free. Horrified by what his beloved book looked

like on the page with the advent of digital publishing, Dr. Knuth had

gone on a mission to create the TeX computer typesetting system,

which remains the gold standard for all forms of scientific

communication and publication. Some consider it Dr. Knuth’s

greatest contribution to the world, and the greatest contribution to

typography since Gutenberg.

This decade-long detour took place back in the age when

computers were shared among users and ran faster at night while

most humans slept. So Dr. Knuth switched day into night, shifted

his schedule by 12 hours and mapped his student appointments to

Fridays from 8 p.m. to midnight. Dr. Broder recalled, “When I told

my girlfriend that we can’t do anything Friday night because

Friday night at 10 I have to meet with my adviser, she thought,

‘This is something that is so stupid it must be true.’”

When Knuth chooses to be physically present, however, he is 100-

per-cent there in the moment. “It just makes you happy to be

around him,” said Jennifer Chayes, a managing director of

Microsoft Research. “He’s a maximum in the community. If you

had an optimization function that was in some way a combination

of warmth and depth, Don would be it.”

Sunday with the algorithmist

Dr. Knuth lives in Stanford, and allowed for a Sunday visitor. That

he spared an entire day was exceptional — usually his availability

is “modulo nap time,” a sacred daily ritual from 1 p.m. to 4 p.m. He

started early, at Palo Alto’s First Lutheran Church, where he

delivered a Sunday school lesson to a standing-room-only crowd.

Driving home, he got philosophical about mathematics.

“I’ll never know everything,” he said. “My life would be a lot worse

if there was nothing I knew the answers about, and if there was

nothing I didn’t know the answers about.” Then he offered a tour of

his “California modern” house, which he and his wife, Jill, built in

1970. His office is littered with piles of U.S.B. sticks and adorned

with Valentine’s Day heart art from Jill, a graphic designer. Most

impressive is the music room, built around his custom-made, 812-

pipe pipe organ. The day ended over beer at a puzzle party.

Puzzles and games — and penning a novella about surreal

numbers, and composing a 90-minute multimedia musical pipe-

dream, “Fantasia Apocalyptica” — are the sorts of things that

really tickle him. One section of his book is titled, “Puzzles Versus

the Real World.” He emailed an excerpt to the father-son team of

Martin Demaine, an artist, and Erik Demaine, a computer scientist,

both at the Massachusetts Institute of Technology, because Dr.

Knuth had included their “algorithmic puzzle fonts.”

“I was thrilled,” said Erik Demaine. “It’s an honor to be in the

book.” He mentioned another Knuth quotation, which serves as the

inspirational motto for the biannual “FUN with Algorithms”

conference: “Pleasure has probably been the main goal all along.”

But then, Dr. Demaine said, the field went and got practical.

Engineers and scientists and artists are teaming up to solve real-

world problems — protein folding, robotics, airbags — using the

Demaines’s mathematical origami designs for how to fold paper

and linkages into different shapes.

Of course, all the algorithmic rigmarole is also causing real-world

problems. Algorithms written by humans — tackling harder and

harder problems, but producing code embedded with bugs and

biases — are troubling enough. More worrisome, perhaps, are the

algorithms that are not written by humans, algorithms written by

the machine, as it learns.

Programmers still train the machine, and, crucially, feed it data.

(Data is the new domain of biases and bugs, and here the bugs and

biases are harder to find and fix). However, as Kevin Slavin, a

research affiliate at M.I.T.’s Media Lab said, “We are now writing

algorithms we cannot read. That makes this a unique moment in

history, in that we are subject to ideas and actions and efforts by a

set of physics that have human origins without human

comprehension.” As Slavin has often noted, “It’s a bright future, if

you’re an algorithm.”

All the more so if you’re an algorithm versed in Knuth. “Today,

programmers use stuff that Knuth, and others, have done as

components of their algorithms, and then they combine that

together with all the other stuff they need,” said Google’s Dr.

Norvig.

“With A.I., we have the same thing. It’s just that the combining-

together part will be done automatically, based on the data, rather

than based on a programmer’s work. You want A.I. to be able to

combine components to get a good answer based on the data. But

you have to decide what those components are. It could happen

that each component is a page or chapter out of Knuth, because

that’s the best possible way to do some task.”

Lucky, then, Dr. Knuth keeps at it. He figures it will take another 25

years to finish “The Art of Computer Programming,” although that

time frame has been a constant since about 1980. Might the

algorithm-writing algorithms get their own chapter, or maybe a

page in the epilogue? “Definitely not,” said Dr. Knuth.

“I am worried that algorithms are getting too prominent in the

world,” he added. “It started out that computer scientists were

worried nobody was listening to us. Now I’m worried that too

many people are listening.”

A version of this article appears in print on Dec. 18, 2018, Section D, Page 1 of the New York edition with the headline:
The Yoda of Silicon Valley. Order Reprints | Today’s Paper | Subscribe

READ 155 COMMENTS

Give this article 155

Dr. Knuth at the California Institute of Technology, where
he received his Ph.D. in 1963. Jill Knuth

Dr. Knuth in 1981, looking at the 1957 Mad magazine issue that
contained his first technical article. He was 19 when it was
published. Jill Knuth

“The Art of Computer Programming,” volumes 1-4. “Send me a
résumé if you can read the whole thing,” Bill Gates wrote in a
blurb. Brian Flaherty for The New York Times

Dr. Knuth discussing typefaces with Hermann Zapf, the type designer. Many consider Dr. Knuth's work on
the TeX computer typesetting system to be the greatest contribution to typography since
Gutenberg. Bettmann, via Getty Images

Dr. Knuth at his desk at home in 1999. Jill Knuth A few notes. Brian Flaherty for The New York Times

Give this article 155

PROFILES IN SCIENCE

Donald Knuth, master of algorithms, reflects on 50 years
of his opus-in-progress, “The Art of Computer

Programming.”

The Yoda of Silicon
Valley

Account

A brave new world. A new crop of chatbots powered by artificial intelligence

has ignited a scramble to determine whether the technology could upend the

economics of the internet, turning today’s powerhouses into has-beens and

creating the industry’s next giants. Here are the bots to know:

Example: 1-SUM

Q. How many operations as a function of input size n ?

21

operation cost (ns) † frequency

variable declaration 2/5 2

assignment statement 1/5 2

less than compare 1/5 n + 1

equal to compare 1/10 n

array access 1/10 n

increment 1/10 n to 2 n

† representative estimates (with some poetic license)

tedious to count exactly

in practice, depends on
caching, bounds checking, …

(see COS 217)

int count = 0;
for (int i = 0; i < n; i++)
 if (a[i] == 0)
 count++;

Simplification 1: cost model

Cost model. Use some elementary operation as a proxy for running time.

22

array accesses, compares, API calls,
floating-point operations, …

int count = 0;
for (int i = 0; i < n; i++)
 if (a[i] == 0)
 count++;

operation cost (ns) † frequency

variable declaration 2/5 2

assignment statement 1/5 2

less than compare 1/5 n + 1

equal to compare 1/10 n

array access 1/10 n

increment 1/10 n to 2 n

cost model = array accesses

“inner loop”

Simplification 2: asymptotic notations

Tilde notation. Discard lower-order terms.
Big Theta notation. Discard lower-order terms and leading coefficient.
 
 
 
 
 
 
 
 
 
 
 
Rationale.

・When n is large, lower-order terms are negligible.

・When n is small, we don’t care.
23

function tilde notation big Theta

4 n5 + 20 n3 + 16 ~ 4 n5 Θ(n5)

0.01 n2 + 100 n4 / 3 − 56 ~ 0.01 n 2 Θ(n2)

 8 log2(n) + 7 n ~ 7 n Θ(n)

 10 n + 3 n log n ~ 3 n log n Θ(n log n)

 2n + n5 ~ 2n Θ(2n)

discard lower-order terms

rigorous definitions involve limits

“order of growth”

(e.g., n = 1,000: 166.667 million vs. 166.167 million)

⅙ n3 − ½ n2 + ⅓ n

Leading-term approximation

n 3/6

n 3/6 ! n 2/2 + n /3

166,167,000

1,000

166,666,667

n

How many array accesses as a function of n?

 
 
 
 
 

A. ½ n (n − 1)

B. n (n − 1)

C. 2 n 2

D. 2 n (n − 1)

Analysis of algorithms: quiz 2

24

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

“inner loop”

Example: two-sum

Q. How many operations as a function of input size n ?

25

operation cost (ns) † frequency

variable declaration 2/5 n + 2

assignment statement 1/5 n + 2

less than compare 1/5 ½ (n + 1) (n + 2)

equal to compare 1/10 ½ n (n − 1)

array access 1/10 n (n − 1)

increment 1/10 ½ n (n + 1) to n2

tedious to count exactly

1/4 n2 + 13/20 n + 13/10 ns

to

3/10 n2 + 3/5 n + 13/10 ns

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

(n − 1) + (n − 2) + 0+ (n − 3) … + 2

½ n (n − 1)

+ 1

Example: 2-SUM

Q. Approximately how many operations as a function of input size n ?

26

operation cost (ns) † frequency

variable declaration 2/5 Θ(n)

assignment statement 1/5 Θ(n)

less than compare 1/5 Θ(n2)

equal to compare 1/10 Θ(n2)

array access 1/10 Θ(n2)

increment 1/10 Θ(n2)

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

(n − 1) + (n − 2) + 0+ (n − 3) … + 2

½ n (n − 1)

+ 1

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size n ?
 
 
 
 
 
 
 
 
A1. array accesses.
A2. Θ(n3) array accesses.
 
 
 
 
Bottom line. Use cost model and asymptotic notation to simplify analysis.

∼ 1
2 n3

27

see COS 240

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

(n
3) =

n(n − 1)(n − 2)
3!

∼
1
6

n3

Common order-of-growth classifications

28

order of
growth emoji name typical code framework description example

Θ(1) 😍 constant a = b + c; statement add two
numbers

Θ(log n) 😎 logarithmic
for (int i = n; i > 0; i /= 2)

{ ... }
divide
in half

binary
search

Θ(n) 😁 linear
for (int i = 0; i < n; i++)

 { ... }
single
loop

find the
maximum

Θ(n log n) 😀 linearithmic mergesort divide and
conquer mergesort

Θ(n2) 😕 quadratic
for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)
 { ... }

double
loop

check
all pairs

Θ(n3) ☹ cubic

for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)

 for (int k = 0; k < n; k++)
 { ... }

triple
loop

check
all triples

Θ(2n) 👿 exponential towers of Hanoi exhaustive
search

check
all subsets

 
Triangular sum.
 
 
Harmonic sum.
 
 
Geometric sum.
 
 
Geometric sum′.

1 + 2 + 3 + … + n ∼
1
2

n2

1 +
1
2

+
1
3

+ … +
1
n

∼ ∫
n

x=1

1
x

dx = ln n

1 + 2 + 4 + 8 + … + n = 2n − 1

n +
n
2

+
n
4

+ … + 1 = 2n − 1

Some useful discrete sums and approximations

29

n a power of 2

1

1 / 2

1 / 4

1 / 8

1 / 16
1 / 32

Approximately how many array accesses as a function of n ?  

 

 

A. ~ n 2 log2 n

B. ~ 3/2 n2 log2 n

C. ~ 1/2 n3

D. ~ 3/2 n3

Analysis of algorithms: quiz 3

30

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = 1; k <= n; k = k*2)
 if (a[i] + a[j] >= a[k])
 count++;

each k loop makes ~ 3 log2 n array accesses
(k loop independent of i and j loops)

k loop executed ~ ½ n2 times
(must analyze i and j loops jointly because j loop depends on i)

Analysis of algorithms: quiz 4

What is the order of growth of the running time as a function of n ?
 
 
 

 

A. Θ(n)

B. Θ(n log n)

C. Θ(n 2)

D. Θ(2n)

1

31

int count = 0;
for (int i = n; i >= 1; i = i/2)
 for (int j = 1; j <= i; j++)
 count++;

n

for simplicity, assume n is a power of 2

= 2n − 1

 + n /2 + n /4 + n /8 + … +

cannot analyze i and j loops independently because j loop depends on i

geometric sum

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Memory basics

Bit. 0 or 1.
 
 
 
 
 
 
 
 
 
 
 
64-bit machine. We assume a 64-bit machine with 8-byte pointers.

33

some JVMs “compress” pointers
to 4 bytes to avoid this cost

term symbol quantity

byte B 8 bits

kilobyte KB 1000 bytes

megabyte MB 10002 bytes

gigabyte GB 10003 bytes

terabyte TB 10004 bytes

0 🙁

1 🙂

some define using powers of 2
(MB = 210 bytes)

Typical memory usage for primitive types and arrays

34

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

primitive types

type bytes

boolean[] 1n + 24

int[] 4n + 24

double[] 8n + 24

one-dimensional arrays (length n)

type bytes

boolean[][] ~ 1 n2

int[][] ~ 4 n2

double[][] ~ 8 n2

two-dimensional arrays (n-by-n)

wasteful

array overhead = 24 bytes

(but ~ 36n bytes in Python 3)

Typical memory usage for objects in Java

Reference. 8 bytes.  

Object overhead. 16 bytes.
Padding. Round up memory of each object to be a multiple of 8 bytes.

 
Ex. Each Date object uses 32 bytes of memory.

35

public class Integer
{
 private int x;
...
}

Typical object memory requirements

object
overhead

public class Node
{
 private Item item;
 private Node next;
...
}

public class Counter
{
 private String name;
 private int count;
...
}

24 bytesinteger wrapper object

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
 private int day;
 private int month;
 private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

4 bytes (int)
4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding)

public class Date {
 private int day;
 private int month;
 private int year;

 ...
}

Analysis of algorithms: quiz 5

How much memory does a WeightedQuickUnionUF object use as a function of n ?  

A. ~ 4 n bytes

B. ~ 8 n bytes

C. ~ 4 n 2 bytes

D. ~ 8 n 2 bytes

36

public class WeightedQuickUnionUF {

 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n) {

 parent = new int[n];
 size = new int[n];

 count = 0;
 for (int i = 0; i < n; i++)
 parent[i] = i;
 for (int i = 0; i < n; i++)
 size[i] = 1;
 }
 ...
}

Analysis of algorithms: quiz 5

How much memory does a WeightedQuickUnionUF object use as a function of n ?

37

8n + 88 ~ 8n bytes

public class WeightedQuickUnionUF {

 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n) {

 parent = new int[n];
 size = new int[n];

 count = 0;
 for (int i = 0; i < n; i++)
 parent[i] = i;
 for (int i = 0; i < n; i++)
 size[i] = 1;
 }
 ...
}

16 bytes
(object overhead)

4 bytes (padding)

4 bytes (int)

8 + (4n + 24) bytes each
(reference + int[] array)

Turning the crank: summary

Empirical analysis.

・Execute program to perform experiments.

・Assume power law.

・Formulate a hypothesis for running time.

・Model enables us to make predictions.
 
 
Mathematical analysis.

・Analyze algorithm to count frequency of operations.

・Use cost model and asymptotic notations to simplify analysis.

・Model enables us to explain behavior.

This course. Learn to use both.

38

�lg n��

h=0

�n/2h+1� h � n

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

image source license

Charles Babbage The Illustrated London News public domain

Babbage Enginine in Operation xRez Studio

Algorithm for the Analytic Engine Ada Lovelace public domain

Ada Lovelace and Book Moore Allen & Innocent

Galaxies Colliding SaltyMikan

Andrew Appel Andrew Appel

Programmer Icon Jaime Botero public domain

Head in the Clouds Ellis Nadler education

Student Raising Hand classroomclipart.com educational use

Running Time pano.si

Analog Stopwatch Adobe Stock education license

https://upload.wikimedia.org/wikipedia/commons/d/d2/Charles_Babbage_1860.jpg
https://creativecommons.org/share-your-work/public-domain/
https://vimeo.com/49080293
https://commons.wikimedia.org/wiki/File:Diagram_for_the_computation_of_Bernoulli_numbers.jpg
https://creativecommons.org/share-your-work/public-domain/
https://www.smithsonianmag.com/smart-news/sold-rare-copy-ada-lovelaces-groundbreaking-computer-algorithm-180969753/
https://www.youtube.com/watch?v=W-csPZKAQc8
https://www.cs.princeton.edu/~appel/
http://www.clker.com/clipart-programmer-1.html
https://wiki.creativecommons.org/wiki/public_domain
https://www.cartoonstock.com/directory/j/job_ladder.asp?expanded=CS301226
https://www.cartoonstock.com/pricing
https://classroomclipart.com/image/vector-clipart/girl-raising-hand-in-classroom-sitting-at-desk-27815.htm
https://classroomclipart.com/image/pages/copyright-information.html
https://stock.adobe.com/images/classic-mechanical-analog-stopwatch-isolated-on-white/309832639
https://stock.adobe.com/enterprise-conditions#educationLicenses

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

image source license

Apple M2 Chip Apple

Macbook Pro M2 Apple

Scientific Method Sue Cahalane by author

Laboratory Apparatus pixabay.com public domain

Dissected Rat Allen Lew CC BY 2.0

Harmonic Integral Wikimedia public domain

Geometric Series Wikimedia CC BY-SA 3.0

Recursive Load Marek Bennett

The Yoda of Silicon Valley New York Times

Babbage’s Analytic Engine Science Museum, London CC BY-SA 2.0

Alan Turing Science Museum, London

https://www.apple.com/newsroom/2022/06/apple-unveils-m2-with-breakthrough-performance-and-capabilities/
https://www.consumerreports.org/electronics-computers/laptops-chromebooks/apple-macbook-pro-14-10-core-m2-pro/m408688/
https://www.teacherspayteachers.com/Product/The-Scientific-Method-Owl-Scientists-431456
https://pixabay.com/photos/laboratory-apparatus-equipment-217041/
https://wiki.creativecommons.org/wiki/public_domain
https://commons.wikimedia.org/wiki/File:Cut_rat_2.jpg
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:Integral_Test.svg
https://wiki.creativecommons.org/wiki/public_domain
https://commons.wikimedia.org/wiki/File:Geometrische_reihe.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://marekbennett.com/2014/03/06/recursive-load/
https://www.nytimes.com/2018/12/17/science/donald-knuth-computers-algorithms-programming.html
https://commons.wikimedia.org/wiki/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg
https://creativecommons.org/licenses/by-sa/2.0/
https://blog.sciencemuseum.org.uk/the-multiple-lives-of-alan-turing/

A final thought

41

“ It is convenient to have a measure of the amount of work involved in a

 computing process, even though it be a very crude one. We may count up

 the number of times that various elementary operations are applied in the

 whole process and then give them various weights.” — Alan Turing (1947)

