
COS 226 Algorithms and Data Structures Spring 2024

Final

This exam has 13 questions worth a total of 100 points. You have 180 minutes.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated spaces. Fill in bubbles and checkboxes completely:
 and . To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a one page reference
sheet (8.5-by-11 paper, both sides, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room: # McCosh 50 # McCosh 60 # Other

P01 P02 P03 P04 P05 P06 P07 P08

#
Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (1 point)

In the spaces provided on the front of the exam, write your name and NetID; fill in the bubble
for your exam room and the precept in which you are officially registered; write and sign the
Honor Code pledge.

2. Graph search algorithms. (12 points)

Run depth-first search and breadth-first search on the following digraph, starting from vertex 0.
Assume the adjacency lists are in sorted order: for example, when iterating over the edges
leaving vertex 4, consider the edge 4→0 before either 4→2, 4→5, 4→6 or 4→8.

46

20

3

7

9

1

8

5

start from here

BFS queue remove: 0 2 6 8 3 5 1 4 7 9
preorder: 0 2 8 3 1 5 9 7 4 6

postorder: 5 7 9 1 6 4 3 8 2 0

Final, Spring 2024

(a) List the 10 vertices in the order they are removed from the queue during the execution
of BFS.

0

(b) List the 10 vertices in DFS preorder.

0

COS 226 FINAL, SPRING 2024 3

(c) List the 10 vertices in DFS postorder.

0

(d) Is the reverse of the DFS postorder in part (c) a topological order for this digraph?

#

yes no

4 PRINCETON UNIVERSITY

3. Minimum spanning trees. (10 points)

Consider the following edge-weighted graph.

Final, Spring 2024

70

40

90130

80

120 100

10

60

Kruskal: 10 20 30 40 50 90 120
Prim: 90 10 50 20 40 30 120

30 20

start Prim from here

50

s

110

(a) List the weights of the MST edges in the order that Kruskal’s algorithm adds them to
the MST.

(b) List the weights of the MST edges in the order that Prim’s algorithm adds them to the
MST. Start Prim’s algorithm from vertex s.

COS 226 FINAL, SPRING 2024 5

4. Shortest paths. (12 points)

Consider the following edge-weighted digraph G:

3

0

5

2

4

1

30

Final, Spring 2024

5080

10

100 10

40

Dijsktra: 0 4 5 3 1 2

60

start from here

10
0

(a) List the 6 vertices in the order they are removed from the queue during Dijkstra’s algo-
rithm with source vertex s = 0.

0

(b) Consider running the Bellman–Ford algorithm on G, with source vertex s = 0. Assume
that, within a pass, the edges are relaxed in sorted order:

0→1, 0→3, 0→4, 1→2, 4→1, 4→2, 4→3, 4→5, 5→2

Immediately after the first pass, what are the values of distTo[v] for each vertex v?
Write the values in the corresponding boxes.

distTo[0] distTo[1] distTo[2] distTo[3] distTo[4] distTo[5]

0

(c) Immediately after the first pass of Bellman–Ford, for which vertices v is distTo[v] the
length of the shortest path from s = 0 to v?

Mark all vertices that apply.

0 1 2 3 4 5

6 PRINCETON UNIVERSITY

5. Maxflows and mincuts. (12 points)

Consider the following flow network and a flow f .

Final, Fall 2024

3 / 3
16 / 16 2 / 2

18 / 25

24 / 37F

flow capacity

A

25 / 30
2 /

10 36 / 36

? / 40

25 / 397 / 7 I

E

J

16 / 1628 / 28

24 / 32

C

7 / 10

B

H

D

7 / 7

source

sink

G

43 / 43

Path A F G B H D I J, bottleneck 3
min cut: { A, B, C, F, G }
max flow value = 71

(a) What is the flow on the edge D → E?

#

2 16 18 25 27 36 40 43

(b) What is the capacity of the cut {A,F,G,H, I}?

#

50 68 78 80 88 92 107 122

(c) Find an augmenting path with respect to f . Write the sequence of vertices in the path.

A →

(d) What is the value of the maximum flow?

#

67 68 71 72 74 75 76

COS 226 FINAL, SPRING 2024 7

(e) Compute a minimum A-J cut in the graph. Which vertices are on the source side of
your minimum cut? Mark all that apply.

A B C D E F G H

8 PRINCETON UNIVERSITY

6. Data structures. (8 points)

(a) A linear-probing hash table of length 10 uses the hash function h(k) = k mod 10 to hash
integer keys between 0 and 100. For example, h(23) = 3 and h(30) = 0.

After inserting 8 keys into an empty hash table, the table is as shown below.

index 0 1 2 3 4 5 6 7 8 9

value 20 19 - - 14 44 6 74 86 59

Which of the following choices gives a possible order in which the keys could have been
inserted into an initially empty hash table?

Assume that the initial length of the array is 10 and that it neither grows nor shrinks.

Fill in all checkboxes that apply.

14, 44, 6, 74, 86, 20, 59, 19

59, 6, 14, 20, 44, 19, 74, 86

20, 59, 6, 74, 14, 86, 44, 19

6, 59, 14, 20, 19, 44, 86, 74

COS 226 FINAL, SPRING 2024 9

(b) Consider the following 2d-tree:

Final, Spring 2024

(12, 10)

(7, 3)

(8, 2) (6, 18) (14, 1)

(19, 3)

(20, 12)

(13, 10)

12 <= x  
6 <= y <= 10

(x, y)

Which of the following points could correspond to (x, y)?

Fill in all checkboxes that apply.

(20, 4) (11, 9) (14, 13) (13, 11) (17, 8) (15, 2)

10 PRINCETON UNIVERSITY

7. Properties of graph algorithms (5 points).

Identify each statement as either always true or sometimes/always false.

true false

Let G be a weighted digraph. If there is a unique minimum weight edge
in G, then this edge is in any MST of G.

#
Let G be a weighted digraph and let s and t be two vertices in G. Any
shortest path from s to t in G is also a shortest path from s to t in the
graph obtained from G by squaring the weight of each edge.

#
Let G be a flow network with source s and sink t. Given a minimum
weight st-cut in G, the value of the maximum flow in G can be
computed in time O(E + V).

#

Let f be a flow. Assume that there are two augmenting paths with
respect to f (different on at least one edge), one with bottleneck
capacity 5 and the other with bottleneck capacity 10. Then, the value of
the maximum flow is at least 15 more than the value of f .

#

Let G be an unweighted graph with a unique global mincut of size 2.
Suppose that we execute Karger’s algorithm on G once, and that in this
execution, all the edges are assigned unique weights and the two edges
crossing the mincut are assigned the two largest weights. Then, Karger’s
algorithm finds the minimum cut in G.

COS 226 FINAL, SPRING 2024 11

8. Dynamic programming. (5 points)

A store owner has a rod of length n feet. They can cut the rod into pieces of integer length
and sell them separately. The value of a piece of rod depends only on its length. The values of
pieces of rod of lengths between 0 and n are given in an array of non-negative integers called
values, where the price of a piece of rod of length t is value[t] dollars (and we always have
value[0]=0). However, cutting a piece of rod to get two pieces costs $1.

Determine the maximum profit obtainable by cutting up the rod and selling the pieces (selling
the whole rod as one piece is allowed).

For example, if the length of the rod is n = 8 and the values of pieces of rods are given in the
following values array, then the maximum obtainable profit is $20. This is achieved by cutting
the rod to three pieces of lengths 1, 2 and 5. The value of those pieces is $2 + $5 + $15 = $22,
but cutting the rod in two locations (to obtain three pieces) costs $2.

length 0 1 2 3 4 5 6 7 8

value 0 2 5 5 8 15 15 16 18

We will solve this problem using dynamic programming. Define the following subproblems,
one for each i with 0 ≤ i ≤ n:

OPT (i) = max profit obtainable by cutting up a rod of length i and selling its pieces

Consider the following partial bottom-up implementation:

int[] opt = new int[n+1];

for {

 opt[i] = values[I] ;

 for

 opt[i] = Math.max(,

 values[j] +);

}

A. (int i = 0; i <= n; i++)

B. (int i = n; i >= 0; i--)

C. (int j = 1; j < n; j++)

D. (int j = 1; j < i; j++)

E. opt[i]

F. opt[j]

G. opt[i] - 1

H. opt[j] - 1

I. opt[i-j] - 1

J. values[0]

K. values[i]

L. values[j]

M. values[i] - 1

N. values[j] - 1

O. values[i-j] - 1

Final, Spring 2024

1

3

2

4

5

12 PRINCETON UNIVERSITY

For each numbered oval above, write the letter of the corresponding code fragment on the right
in the space provided. You may use each letter once, more than once, or not at all.

1 2 3 4 5

COS 226 FINAL, SPRING 2024 13

9. Randomness (5 points).

Consider the following two methods whose goal is to find a 1 entry in a binary array. Specifi-
cally, we are given an integer array a of length n with 0 and 1 entries. We assume that n ≥ 100
and that at least 0.1n entries contain a 1 value. We wish to return any one index 0 ≤ i < n
such that a[i] = 1.

static int findOneA(int a[]) {

int n = a.length;

int r;

for (int i = 0; i < 0.1 * n; i++) {

r = StdRandom.uniformInt(n);

if (a[r] == 1) return r;

}

return -1;

}

static int findOneB(int a[]) {

int n = a.length;

for (int i = 0; i < n; i++) {

if (a[i] == 1) return i;

}

return -1;

}

Fill in all checkboxes that apply.

findOneA implements a randomized algorithm and findOneB implements a determin-
istic (non-randomized) algorithm.

findOneA has O(1) expected running time, but Θ(n) worst case running time.

findOneB has ∼ 0.1n worst case running time.

findOneA always returns a correct answer (i.e., returns i such that a[i] = 1).

findOneB always returns a correct answer (i.e., returns i such that a[i] = 1).

14 PRINCETON UNIVERSITY

10. Multiplicative weights (5 points).

Consider the experts problem with n ≥ 2 experts over a period of T days.

Identify each statement as either always true or sometimes/always false.

true false

#
In the elimination algorithm, an expert who makes 10 mistakes is
eliminated before or on the same day as an expert who makes 5
mistakes.

#

Consider the prediction algorithm that, on each day, returns the
minority prediction. That is, it predicts 0 if and only if less than half of
the experts predict 0 (experts are never removed). Then, for any
possible expert predictions and outcomes, this algorithm makes at least
as many mistakes as the elimination algorithm.

#
Suppose that one of the experts always predicts correctly and the rest of
the n − 1 experts always predict incorrectly. Then, the total number of
mistakes made by the multiplicative weights algorithm is O(1).

#
Suppose that there are n

4 experts who each make at most M mistakes.
Then, the number of mistakes made by the multiplicative weights
algorithm is O(M).

#

In the simplified AdaBoost algorithm, if after 5 iterations, one point
has 25 times weight as another point, then the first point was mislabeled
by each of the decision stumps trained in the first 5 iterations.

COS 226 FINAL, SPRING 2024 15

11. Intractability (5 points).

Identify each statement as either always true or sometimes/always false.

true false

If problems X and Y are NP-complete, then problem Y poly-time
reduces to problem X and problem X poly-time reduces to problem Y .

If Bipartite-Matching poly-time reduces to a decision problem Y ,
then Y is in P.

Let X, Y and Z be decision problems. If X poly-time reduces to Y
and Y poly-time reduces to Z, then X poly-time reduces to Z.

If P ≠ NP then SAT does not have a polynomial time algorithm.

#

The witness and verification algorithm below prove that the following
problem is in NP:
Problem: Given a set of boolean equations and an integer k, decide if
there is an assignment that satisfies exactly k of the equations.
Witness: Assignment to variables claimed to satisfy exactly k equations.
Verification algorithm: For each equation, check if it’s satisfied by the
assignment. Count the number of satisfied equations and compare to k.

16 PRINCETON UNIVERSITY

12. Design: shortest paths through a landmark. (10 points)

(a) Design a data structure called Route, that allows the client to find the length of the
shortest path from a fixed source vertex s to a query destination vertex v through a
fixed “landmark” vertex x.

To construct a Route object, the client specifies the weighted digraph G (assume that
the weights are positive integers), the source vertex s, and the landmark vertex x. The
client can then run pathLen(v) with any vertex v to obtain the length of the shortest
path from s to v through x.

Implement the following API for Route:

Final, Spring 2024

public class Route

Route(EdgeWeightedDigraph G, int s, int x) creates a Route data structure

int pathLen(int v)
returns the length of the shortest
path from s through x to v

public class RouteXL

RouteXL(EdgeWeightedDigraph G, int x) creates a RouteXL data structure

int pathLen(int s, int v)
returns the length of the shortest
path from s through x to v

Performance requirements. For full credit, the instance variables in your implemen-
tation should use space O(V), where V is the number of vertices in G. The constructor
should run in time O(E logV +V), where E is the number of edges in G, and pathLen()

should run in Θ(1) time.

Give a concise English description of your algorithm for implementing the constructor.
You may use code or pseudocode to improve clarity. You may use any of the data
types and algorithms that we considered in this course (either algs4.jar or java.util
versions).

COS 226 FINAL, SPRING 2024 17

Give a concise English description of your algorithm for implementing pathLen(). You
may use code or pseudocode to improve clarity.

18 PRINCETON UNIVERSITY

(b) Design another data type called RouteXL, that, as before, allows the client to find the
length of the shortest path through a fixed landmark vertex x. But now both the source
vertex s, and the destination vertex v, are only specified when calling pathLen().

That is, the new API is:

Final, Spring 2024

public class Route

Route(EdgeWeightedDigraph G, int s, int x) creates a Route data structure

int pathLen(int v)
returns the length of the shortest
path from s through x to v

public class RouteXL

RouteXL(EdgeWeightedDigraph G, int x) creates a RouteXL data structure

int pathLen(int s, int v)
returns the length of the shortest
path from s through x to v

Performance requirements.

Full credit: As before, for full credit, the instance variables in your implementa-
tion should use space O(V). The constructor should run in time O(E logV + V), and
pathLen() should run in Θ(1) time.

Partial credit (at least 1/3 of the credit): Same performance guarantees as in the full
credit option, but you may assume that the graph is undirected.

Are you attempting a full credit solution (directed graph) or a partial credit solution
(undirected graph)?

#

full
credit

partial
credit

COS 226 FINAL, SPRING 2024 19

Give a concise English description of your algorithm for implementing the constructor.
You may use code or pseudocode to improve clarity.

Give a concise English description of your algorithm for implementing pathLen(). You
may use code or pseudocode to improve clarity.

20 PRINCETON UNIVERSITY

13. Design: shortest path with a reverse edge. (10 points)

Let G be an (unweighted) digraph. Given a source vertex s and a target vertex t, we wish to
find the shortest “almost-path” from s to t.

An almost-path in G is a path where exactly one of the edges on the path is used in the reverse
direction. Formally, an almost-path of length m in G is a sequence of vertices v0, v1, v2, . . . , vm
such that there exists 0 ≤ j <m for which the following holds: for all 0 ≤ i <m, i ≠ j, it holds
that vi→vi+1 is a directed edge in G. Additionally, vj+1→vj is a directed edge in G.

Example. In the following digraph G, the shortest path from 0 to 7 is 0,1,2,3,7 (length 4);
the shortest almost-path from 0 to 7 is 0,6,7 (length 2, the edge 7→6 is used in the reverse
direction).

54

10

7

3

6

2

preorder: 0 2 5 8 1 3 7 9 6 4
postorder: 5 1 7 9 3 6 8 2 4 0

Final, Spring 2024

source vertex

target vertex

(a) Is the following claim correct?

For any digraph G and any two vertices s and t, no shortest almost-path from s to t
in G uses an edge in both directions (that is, if an almost-path uses the edge v→w, it
does not use the reverse edge w→v).

#

yes no

COS 226 FINAL, SPRING 2024 21

(b) Design an algorithm that finds the shortest almost-path from s to t.

Full credit: Your algorithm should run in time O(E +V) in the worst case, where V is
the number of vertices in G and E is the number of edges.

Partial credit (at least half credit): Your algorithm should run in time O((E + V)E)
in the worst case.

Give a concise English description of your algorithm. Feel free to use code or pseudocode
to improve clarity. You may also add a sketch to illustrate your algorithm.

The running time of your solution is Θ()

22 PRINCETON UNIVERSITY

(c) Assume we were to change the definition of an almost-path to say that at most one
(instead of exactly one) of the edges is used in the reverse direction.

Design an algorithm for finding the shortest almost-path from s to t using this new
definition. The full credit and partial credit performance requirements are as in part (b).
You may use the algorithm you designed in part (b) and explain the changes that should
be made.

COS 226 FINAL, SPRING 2024 23

This page is intentionally blank. You may use this page for scratch work.

