
COS 226 Algorithms and Data Structures Spring 2024

Final Solutions

1. Initialization.

Don’t forget to do this.

2. Graph search algorithms.

(a) 0 2 6 8 3 5 1 4 7 9

(b) 0 2 8 3 1 5 9 7 4 6

(c) 5 7 9 1 6 4 3 8 2 0

(d) no
The digraph is not a DAG. For example, 3→ 1→ 9 is a directed cycle.

3. Minimum spanning trees.

(a) 10 20 30 40 50 90 120

(b) 90 10 50 20 40 30 120

4. Shortest paths.

(a) 0 4 5 3 1 2

(b) 0 80 100 70 30 40

(c) 0 1 3 4 5

5. Maxflows and mincuts.

(a) 36 = 16 + 2 + 25 − 7

(b) 107 = 28 + 10 + 30 + 39

(c) A→ F → G→ B →H →D → I → J

(d) 71 = 28 + 7 + 36

(e) A F G

6. Data structures.

(a) T T F F
Insert each option to an empty table.



2 PRINCETON UNIVERSITY

(b) (20, 4), (17, 8)
The constraints of the 2d-tree imply that, for any point (x, y) in T, we must have both
x ≥ 12 and 3 ≤ y ≤ 10.

7. Properties of graph algorithms.

T F T F T

8. Dynamic programming.

A K D E I

int opt[] = new int[n + 1];

for (int i = 0; i <= n; i++) {

opt[i] = values[i];

for (int j = 1; j < i; j++)

opt[i] = Math.max(opt[i], values[j] + opt[i-j] - 1);

}

return opt[n];

9. Randomness.

T T F F T

10. Multiplicative weights.

F F F T T

11. Intractability.

T F T T T

12. Design: shortest paths through a landmark.

(a) Constructor: Run Dijkstra’s algorithm twice: once using s as the source vertex, and
once using x as the source vertex. Store an integer variable sToX containing the distance
from s to x (which is contained in distTo[x] of the Dijkstra’s run that used s as the
source) and also the distTo array of the Dijsktra’s run that used x as a source, both as
instance variables.

pathLen: Report the sum of the distance from s to x and the distance from x to v, i.e.
sToX + distTo[v].

(b) Constructor: First, run Dijsktra’s in G using x as the source vertex and store the
distTo array as an instance variable.

Compute the reverse graph of G (obtained by reversing each edge in G and keeping the
same vertices), call it G′. Run Dijkstra’s in G′ using x as the source and store the distTo
array as an instance variable called distToReverse. The value of distToReverse[u]

corresponds to the shortest path from u to x for any u.

pathLen: Report the sum distTo[v] + distToReverse[s].



COS 226 FINAL, SPRING 2024 3

13. Design: shortest path with a reverse edge.

(a) No, the simplest example is a graph with two vertices s and t and one directed edge
from s to t.

(b) Construct a new graph G′. Create two copies of G and add them to G′, call the first
copy G0 and the second copy G1. For every edge (u, v) ∈ G, add an edge from v0 to u1
in G′, i.e. an edge from the copy of vertex v in G0 to the copy of vertex u in G1. To
find the shortest almost-path, run a BFS from s0 and report the distance to t1 (so from
the copy of vertex s in G0 to the copy of vertex t in G1).

The key idea of this solution is that vertices in G0 correspond to paths only taking edges
in the normal direction, and vertices in G1 correspond paths that have taken exactly
one edge in the opposite direction (and that’s why why add an egde from v0 to u1 for
each edge (u, v), note how the vertices are switched).

(c) Alter the full solution to add a “super sink”, i.e. a new vertex t′ and edges from t0 and
t1 to t′. Run BFS to find shortest path from s0 to t′ and report the result minus 1.

Alternate solution: Run a BFS on the graph G from s to t, and report the minimum
between this and the result found by the solution in part b.


