COS 217: Introduction to Programming Systems

Numbers (in C and otherwise)

Q: Why do computer programmers confuse Christmas and Halloween?

A: Because 25 Dec == 31 Oct

The Decimal Number System

Name

• From Latin decem ("ten")

Characteristics

For us, these symbols (Not universal ...)

0 1 2 3 4 5 6 7 8 9

European (descended from the West Arabic	0	1	2	3	4	5	6	7	8	9
Arabic-Indic		١	۲	٣	٤	٥	٦	٧	٨	٩
Eastern Arabic-Indic (Persian and Urdu)		١	۲	٣	۴	۵	۶	٧	٨	٩
Devanagari (Hindi)	o	१	२	nγ	४	٩	હ્	૭	ሪ	९
Tamil		க	ഉ	<u>гъ</u> _	சு	Ē	Fir	எ	अ	Jεn

https://commons.wikimedia.org/wiki/File:Arabic numerals-en.svg

Cowbirds in Love #43 – Sanjay Kulkacek

There are 10 rocks.

Oh, you must be using base 4. See, I use base 10.

No. I use base 10.
What is base 4?

Every base is base 10.

- Positional
 - \bullet 2945 \neq 2495
 - $2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$

(Most) people use the decimal number system

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal. From late Latin *binarius* ("consisting of two"), from classical Latin *bis* ("twice")

Characteristics

- Two symbols: 0 1
- Positional: $1010_{B} \neq 1100_{B}$

Most (digital) computers use the binary number system

Terminology

- Bit: a single binary symbol ("binary digit")
- Byte: (typically) 8 bits
- Nibble / Nybble: 4 bits we'll see a more common name for 4 bits soon.

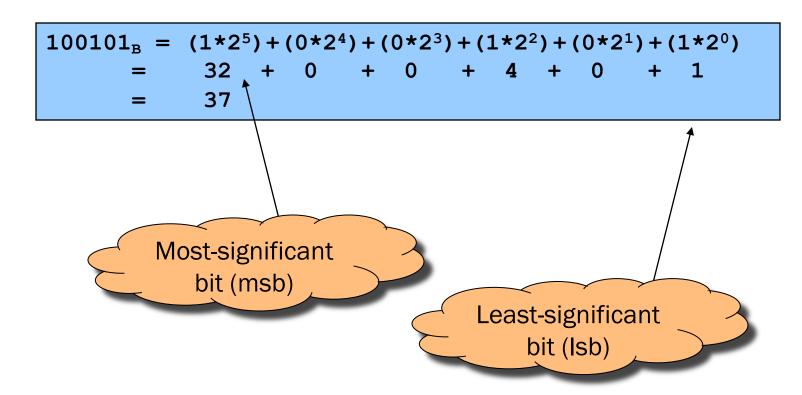
Decimal-Binary Equivalence

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Decimal	Binary
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110
31	11111
	• • •

Decimal-Binary Conversion

Binary to decimal: expand using positional notation



(Decimal) Integer to binary: do the reverse

• Determine largest power of 2 that's ≤ number; write template

$$37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)$$

Fill in template

```
37 = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})
-32
5
-4
1
100101_{B}
-1
0
```

Integer-Binary Conversion

Integer to binary division method

Repeatedly divide by 2, consider remainder

```
37 / 2 = 18 R 1

18 / 2 = 9 R 0

9 / 2 = 4 R 1

4 / 2 = 2 R 0

2 / 2 = 1 R 0

1 / 2 = 0 R 1
```

Read from bottom to top: 100101_B

The Hexadecimal Number System

Name

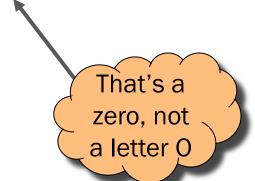
From ancient Greek ἕξ (hex, "six") + Latin-derived decimal

Characteristics

- Sixteen symbols
 - 0123456789ABCDEF
- Positional
 - $A13D_H \neq 3DA1_H$

Computer programmers often use hexadecimal ("hex")

• In C: Ox prefix (OxA13D, etc.)



Binary-Hexadecimal Conversion

Observation:

• $16^1 = 2^4$, so every 1 hexit corresponds to a nybble (4 bits)

Binary to hexadecimal

1010000100111101_B
A 1 3 D_H

Number of bits in binary number not a multiple of 4? ⇒ pad with zeros on left

Hexadecimal to binary

A 1 3 D_H
1010000100111101_B

Discard leading zeros from binary number if appropriate

Integer-Hexadecimal Conversion

Hexadecimal to (decimal) integer: expand using positional notation

$$25_{H} = (2*16^{1}) + (5*16^{0})$$

= 32 + 5
= 37

Integer to hexadecimal: use the division method

Read from bottom to top: 25_H

Are you 539_H?

Convert binary 101010 into decimal and hex

- A. 21 decimal, A2 hex
- B. 21 decimal, A8 hex
- C. 18 decimal, 2A hex
- D. 42 decimal, 2A hex

hint: convert to hex first

challenge: once you've locked in and discussed with a neighbor, figure out why this slide's title is what it is.

The Octal Number System

Name

• "octo" (Latin) ⇒ eight

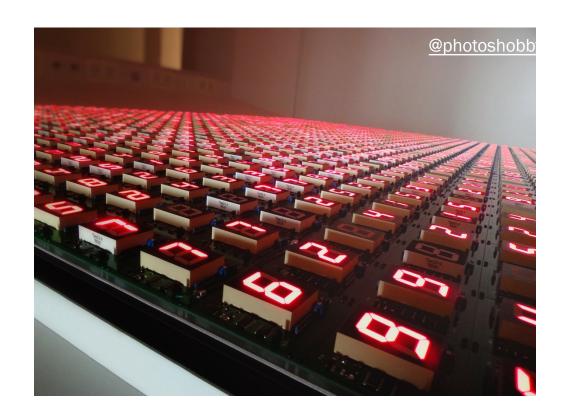
Characteristics

- Eight symbols
 - 01234567
- Positional
 - 17430 ≠ 73140

Computer programmers sometimes use octal (so does Mickey!)

• In C: 0 prefix (01743, etc.)

```
[cmoretti@tars:tmp$ls -l myFile
-rw-r--r-- 1 cmoretti wheel 0 Sep 7 10:58 myFile
[cmoretti@tars:tmp$chmod 755 myFile
[cmoretti@tars:tmp$ls -l myFile
-rwxr-xr-x 1 cmoretti wheel 0 Sep 7 10:58 myFile
```

INTEGERS

Representing Unsigned (Non-Negative) Integers

Mathematics

Non-negative integers' range is 0 to ∞

Computers

- Range limited by computer's word size
- Word size is n bits \Rightarrow range is 0 to $2^n 1$ representing with an n bit binary number
- Exceed range ⇒ overflow

Typical computers today

• n = 32 or 64, so range is 0 to $2^{32} - 1$ (~4 billion) or $2^{64} - 1$ (huge ... ~1.8e19)

Pretend computer for these slides, hereafter on these slides:

- Assume n = 4, so range is 0 to $2^4 1$ (15)
- All points generalize to larger word sizes like 32 and 64

On 4-bit pretend computer

Ungianed	
<u>Unsigned</u>	
<u>Integer</u>	<u>Rep</u>
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Adding Unsigned Integers

Addition

Start at right column
Proceed leftward
Carry 1 when necessary

Beware of overflow

How would you detect overflow programmatically?

Results are mod 2⁴

$$7 + 10 = 17$$

17 mod 16 = 1

Subtracting Unsigned Integers

Subtraction

Start at right column
Proceed leftward
Borrow when necessary

```
1
3 0011<sub>B</sub>
- 10 - 1010<sub>B</sub>
---
9 1001<sub>B</sub>
```

Beware of overflow

How would you detect overflow programmatically?

Results are mod 2⁴

Reminder: negative numbers exist

Obsolete Attempt #1: Sign-Magnitude

Integer	Rep
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit indicates sign

```
0 ⇒ positive
1 ⇒ negative
```

Remaining bits indicate magnitude

$$0101_{B} = 101_{B} = 5$$

 $1101_{B} = -101_{B} = -5$

Pros and cons

- + easy to understand, easy to negate
- + symmetric
- two representations of zero
- need different algorithms to add signed and unsigned numbers

Not used for integers today

Obsolete Attempt #2: Ones' Complement

Integer	Rep
<u></u>	1000
-6	1001
- 5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit has weight $-(2^{b-1}-1)$

$$1010_{B} = (1*-7) + (0*4) + (1*2) + (0*1)$$

$$= -5$$

$$0010_{B} = (0*-7) + (0*4) + (1*2) + (0*1)$$

$$= 2$$

Computing negative = flipping all bits

Similar pros and cons to sign-magnitude

Integer	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit has weight $-(2^{b-1})$

$$1010_{B} = (1*-8) + (0*4) + (1*2) + (0*1)$$

$$= -6$$

$$0010_{B} = (0*-8) + (0*4) + (1*2) + (0*1)$$

$$= 2$$

Integer	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

```
Computing negative neg(x) = \sim x + 1 neg(x) = onescomp(x) + 1 neg(0101_B) = 1010_B + 1 = 1011_B neg(1011_B) = 0100_B + 1 = 0101_B
```

Pros and cons

- not symmetric("extra" negative number; -(-8) = -8)
- + one representation of zero
- + same algorithms add/subtract signed and unsigned integers

Adding Signed Integers


```
pos + pos
```

```
1111

3 0011<sub>B</sub>

+ -1 + 1111<sub>B</sub>

-- ----

2 0010<sub>B</sub>
```

neg + neg

pos + pos (overflow)

How would you detect overflow programmatically?

neg + neg (overflow)

Subtracting Signed Integers

How would you compute 3 – 4?

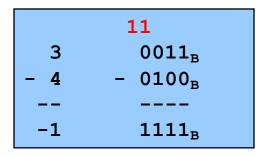
```
3 0011<sub>B</sub>
- 4 - 0100<sub>B</sub>
-- ----
? ?????<sub>B</sub>
```

Subtracting Signed Integers

Perform subtraction with borrows

or

Compute two's comp and add



Negating Signed Ints: Math

Question: Why does two's comp arithmetic work?

Answer: $[-b] \mod 2^4 = [twoscomp(b)] \mod 2^4$

```
[-b] mod 2^4
= [2^4 - b] mod 2^4
= [2^4 - 1 - b + 1] mod 2^4
= [(2^4 - 1 - b) + 1] mod 2^4
= [onescomp(b) + 1] mod 2^4
= [twoscomp(b)] mod 2^4
```

So: $[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4$

```
[a - b] mod 2^4

= [a + 2^4 - b] mod 2^4

= [a + 2^4 - 1 - b + 1] mod 2^4

= [a + (2^4 - 1 - b) + 1] mod 2^4

= [a + onescomp(b) + 1] mod 2^4

= [a + twoscomp(b)] mod 2^4
```


(AT LONG[°] LAST) INTEGERS IN C

Integer Data Types in C

Integer types of various sizes: {signed, unsigned} {char, short, int, long}

- Shortcuts: signed assumed for short/int/long; unsigned means unsigned int
- char is 1 byte
 - Number of bits per byte is unspecified (but in the 21st century, safe to assume it's 8)
 - Signedness is system dependent, so for arithmetic use "signed char" or "unsigned char"
- Sizes of other integer types not fully specified but constrained:
 - int was intended to be "natural word size" of hardware, but isn't always
 - 2 ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

On armlab:

Natural word size: 8 bytes ("64-bit machine")

• char: 1 byte

• short: 2 bytes

• int: 4 bytes (compatibility with widespread 32-bit code)

• long: 8 bytes

What decisions did the designers of Java make?

Integer Types in Java vs. C

`		Java	С
Unsigned types	char	// 16 bits	<pre>unsigned char unsigned short unsigned (int) unsigned long</pre>
Signed types	byte short int long	<pre>// 8 bits // 16 bits // 32 bits // 64 bits</pre>	signed char (signed) short (signed) int (signed) long

- 1. Not guaranteed by C, but on armlab, short = 16 bits, int = 32 bits, long = 64 bits
- 2. Not guaranteed by C, but on armlab, char is unsigned

sizeof Operator

- Applied at compile-time
- Operand can be a data type
- Operand can be an expression, from which the compiler infers a data type

Examples, on armlab using gcc217

- sizeof(int) evaluates to 4
- sizeof(i) evaluates to 4 if i is a variable of type int
- sizeof(1+2) evaluates to 4

Integer Literals in C

• Decimal int: 123

Prefixes to indicate a different base

• Octal int: 0173 = 123

• Hexadecimal int: 0x7B = 123

No prefix to indicate binary int literal

Suffixes to indicate a different type

Use "L" suffix to indicate long literal

Use "U" suffix to indicate unsigned literal

 No suffix to indicate char or short literals; instead, cast

char: '{' (← really int, as seen last time), (char) 123, (char) 0173, (char) 0x7B

int: 123, 0173, 0x7B

long: 123L, 0173L, 0x7BL

short: (short)123, (short)0173, (short)0x7B

unsigned int: 123U, 0173U, 0x7BU

unsigned long: 123UL, 0173UL, 0x7BUL

unsigned short: (unsigned short)123, (unsigned short)0173, (unsigned short)0x7B

sizeof synthesis

Q: What is the value of the following size of expression on the armlab machines?

```
int i = 1;
sizeof(i + 2L)
```

A. 3

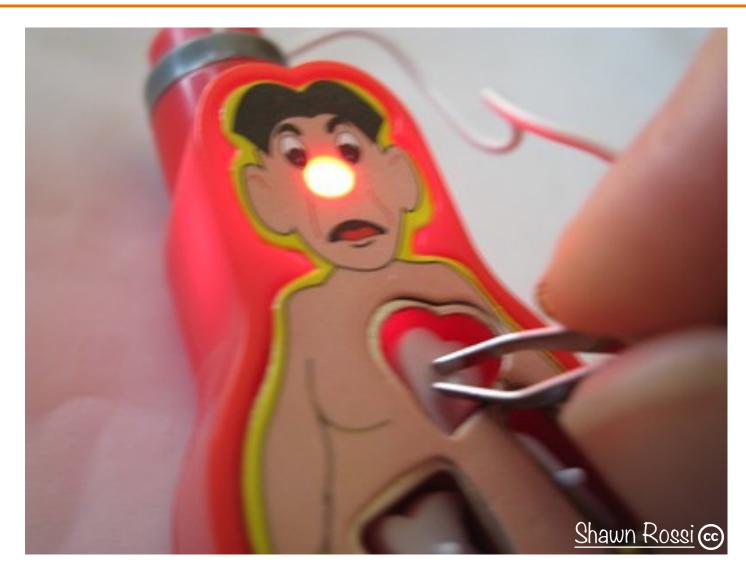
B. 4

C. 8

D. 12

E. error

OPERATIONS ON NUMBERS



Reading / Writing Numbers

Motivation

- Must convert between external form (sequence of character codes) and internal form
- Could provide getchar(), putshort(), getint(), putfloat(), etc.
- Alternative implemented in C: parameterized functions

scanf() and printf()

- Can read/write any primitive type of data
- First parameter is a format string containing conversion specs: size, base, field width
- Can read/write multiple variables with one call

See King book for details

Operators in C

- Typical arithmetic operators: + * / %
- Typical relational operators: == != < <= > >=
 - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Typical logical operators: ! && ||
 - Each interprets 0 ⇒ FALSE, non-0 ⇒ TRUE
 - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Cast operator: (type)
- Bitwise operators: ~ & | ^ >> <<

Shifting Unsigned Integers

Bitwise right shift (>> in C): fill on left with zeros

$$10 >> 1 \Rightarrow 5$$

$$1010_{B} \qquad 0101_{B}$$

$$10 >> 2 \Rightarrow 2$$

 1010_{B} 0010_{B}

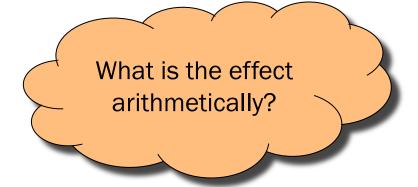
What is the effect arithmetically?

Bitwise left shift (<< in C): fill on right with zeros

$$\begin{array}{ccc} 5 & << 1 \Rightarrow 10 \\ 0101_{\text{B}} & 1010_{\text{B}} \end{array}$$

$$3 << 3 \Rightarrow 8$$

$$0011_{B} 1000_{B}$$



← Results are mod 2⁴

Other Bitwise Operations on Unsigned Integers

Bitwise NOT (~ in C)

Flip each bit (don't forget leading Os!)

$$\begin{array}{c} \sim 5 \Rightarrow 10 \\ 0101_{\text{B}} & 1010_{\text{B}} \end{array}$$

Bitwise AND (& in C)

• AND (1=True, 0=False) corresponding bits

Useful for "masking" bits to 0

x & 0 is 0, x & 1 is x

Other Bitwise Operations on Unsigned Ints

Bitwise OR: (| in C)

Logical OR corresponding bits

```
10 1010<sub>B</sub>
| 1 | 0001<sub>B</sub>
| -- 11 1011<sub>B</sub>
```

Useful for "masking" bits to 1 x | 1 is 1, x | 0 is x

Bitwise exclusive OR (^ in C)

Logical exclusive OR corresponding bits

x ^ x sets all bits to 0

Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

```
Decimal Binary
2 00000000 00000000 00000000 00000010
&& 1 00000000 00000000 00000000 00000001
---- 1 00000000 00000000 00000000 00000001
```

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Implication:

- Use logical AND to control flow of logic
- Use bitwise AND only when doing bit-level manipulation
- Same for OR and NOT

A Bit Complicated ... challenge for the bored

How do you set bit k (where the least significant bit is bit 0) of unsigned variable u to zero (leaving everything else in u unchanged)?

- A. u &= (0 << k);
- B. u = (1 << k);
- C. u = (1 << k);
- D. $u \&= \sim (1 << k);$
- E. $u = \sim u \wedge (1 << k);$

Aside: Using Bitwise Ops for Arithmetic

Can use <<, >>, and & to do some arithmetic efficiently

$$x * 2^y == x << y$$

• $3*4 = 3*2^2 = 3<<2 \Rightarrow 12$

$$x / 2^y == x >> y$$

• $13/4 = 13/2^2 = 13>>2 \Rightarrow 3$

$$x \% 2^{y} == x \& (2^{y}-1)$$
• $13\%4 = 13\%2^{2} = 13\&(2^{2}-1)$
= $13\&3 \Rightarrow 1$

Fast way to multiply by a power of 2

Fast way to divide unsigned by power of 2

Fast way to mod by a power of 2

Many compilers will do these transformations automatically!

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

$$3 << 1 \Rightarrow 6$$
 $0011_{B} \quad 0110_{B}$
 $-3 << 1 \Rightarrow -6$
 $1101_{B} \quad 1010_{B}$
 $-3 << 2 \Rightarrow 4$
 $1101_{B} \quad 0100_{B}$

What is the effect arithmetically?

Results are mod 2⁴

Bitwise right shift: fill on left with ???

Shifting Signed Integers (cont.)

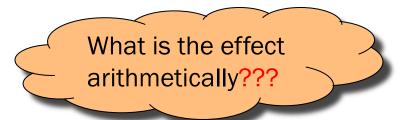
Bitwise arithmetic right shift: fill on left with sign bit

$$6 >> 1 \Rightarrow 3$$
 $0110_{B} 0011_{B}$
 $-6 >> 1 \Rightarrow -3$
 $1010_{B} 1101_{B}$

What is the effect arithmetically?

Bitwise logical right shift: fill on left with zeros

$$6 \gg 1 \Rightarrow 3$$
 0110_{B}
 0011_{B}
 $-6 \gg 1 \Rightarrow 5$
 1010_{B}
 0101_{B}



In C, right shift (>>) could be logical (>>> in Java) or arithmetic (>> in Java)

- Not specified by standard (happens to be arithmetic on armlab)
- Best to avoid shifting signed integers

Other Operations on Signed Ints

Bitwise NOT (~ in C)

Same as with unsigned ints

Bitwise AND (& in C)

Same as with unsigned ints

Bitwise OR: (| in C)

Same as with unsigned ints

Bitwise exclusive OR (^ in C)

Same as with unsigned ints

Best to avoid using signed ints for bit-twiddling.

Assignment Operator

Many high-level languages provide an assignment statement

C provides an assignment operator

- Performs assignment, and then evaluates to the assigned value
- Allows assignment to appear within larger expressions
- But be careful about precedence! Extra parentheses often needed!

Assignment Operator Examples

Examples

```
i = 0;
   /* Side effect: assign 0 to i.
      Evaluate to 0. */
j = i = 0; /* Assignment op has R to L associativity */
   /* Side effect: assign 0 to i.
      Evaluate to 0.
      Side effect: assign 0 to j.
      Evaluate to 0. */
while ((i = getchar()) != EOF) ...
   /* Read a character or EOF value.
      Side effect: assign that value to i.
      Evaluate to that value.
      Compare that value to EOF.
      Evaluate to 0 (FALSE) or 1 (TRUE). */
```

Special-Purpose Assignment in C

Motivation

- The construct a = b + c is flexible
- The construct d = d + e is somewhat common
- The construct d = d + 1 is very common

Assignment in C

- Introduce += operator to do things like d += e
- Extend to -= *= /= ~= &= |= ^= <<= >>=
- All evaluate to whatever was assigned
- Pre-increment and pre-decrement: ++d --d
- Post-increment and post-decrement (evaluate to old value): d++ d--

Confusion Plusplus

Q: What are i and j set to in the following code?

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

51 E. 7, 13

Incremental Iffiness

Q: What does the following code print?

```
int i = 1;
switch (i++) {
   case 1: printf("%d", ++i);
   case 2: printf("%d", i++);
}
```

A. 1

B. 2

C. 3

D. 22

E. 33

Sample Exam Question (Spring 2017, Exam 1)

- 1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following questions.
 - (i) (4 points) What is the largest unsigned number that can be represented in 7 bits? In binary:

 In decimal:
 - (ii) (4 points) What is the smallest (i.e., most negative) signed number represented in 2's complement in 7 bits?

In binary:

In decimal:

- (iii) (2 points) Is there a number n, other than 0, for which n is equal to –n, when represented in 2's complement in 7 bits? If yes, show the number (in decimal). If no, briefly explain why not.
- (iv) (2 points) When doing arithmetic addition using 2's complement representation in 7 bits, is it possible to have an overflow when the first number is positive and the second is negative? (Yes/No answer is sufficient, no need to explain.)

(Hard!) Sample Exam Question (Fall 2020, Exam 1)

a. In the two ranges below, replace the "____" with the inclusive upper and lower bounds of decimal numbers that do not change value when moving from i-bit two's complement to (i+1)-bit two's complement (for example, when moving from four bits to represent integers to using five bits to do so). The two ranges consider two different possibilities for changing an i-bit value into an (i+1)-bit value:

If we make the change by prepending a 0 onto the front of the i-bit representation (e.g., 1001 -> 01001):

____ <= χ <= ____

If we make the change by prepending a 1 onto the front of the i-bit representation (e.g., 1001 -> 11001):

____ <= χ <= ____

b. In the range below, replace the "____" with the inclusive upper and lower bounds of armlab C int literals for which the expression still compiles and does not change value when adding a O before the first character of the literal (for example, 217 -> 0217):

<= x <=

Hint 1: does a literal 09 compile?

Hint 2: the word "expression" is intentional; note that the first character of a signed int is not necessarily a digit.

APPENDIX: FLOATING POINT

```
@tylerleeeaston
```

Rational Numbers

Mathematics

- A rational number is one that can be expressed as the ratio of two integers
- Unbounded range and precision

Computer science

- Finite range and precision
- Approximate using floating point number


```
Like scientific notation: e.g., c is 2.99792458 \times 10^8 m/s
```

This has the form

```
(multiplier) \times (base)^{(power)}
```

In the computer,

- Multiplier is called mantissa
- Base is almost always 2
- Power is called exponent

Floating-Point Data Types

C specifies:

- Three floating-point data types: float, double, and long double
- Sizes unspecified, but constrained:
- sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)

• float: 4 bytes

• double: 8 bytes

On ArmLab (but varying across architectures)

• long double: 16 bytes

How to write a floating-point number?

- Either fixed-point or "scientific" notation
- Any literal that contains decimal point or "E" is floating-point
- The default floating-point type is double
- Append "F" to indicate float
- Append "L" to indicate long double

Examples

• double: 123.456, 1E-2, -1.23456E4

• float: 123.456F, 1E-2F, -1.23456E4F

• long double: 123.456L, 1E-2L, -1.23456E4L

IEEE Floating Point Representation

Common finite representation: IEEE floating point

More precisely: ISO/IEEE 754 standard

Using 32 bits (type **float** in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 8 bits: exponent + 127

Using 64 bits (type **double** in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023

mantissa (noun): decimal part of a logarithm, 1865, **Answer: long before computers!** from Latin mantisa "a worthless addition, makeweight"

ac	0	7	3	3	4	ś	6	7	8	9.	Δ ₉₀₈ +	ı	2	
														_
50	-6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9	1	2	
51	-7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8	I	2	
53	-7160		7177		7193	7202	7210		7226		8	I	2	
53	-7243	210-20-0-0	7259			7284		The second second		7316	8	T	2	

Floating Point Example

10000011101101100000000000000000

32-bit representation

Sign (1 bit):

1 ⇒ negative

Exponent (8 bits):

- 10000011_B = 131
- 131 127 = 4

Mantissa (23 bits):

- 1 + $(1*2^{-1})$ + $(0*2^{-2})$ + $(1*2^{-3})$ + $(1*2^{-4})$ + $(0*2^{-5})$ + $(1*2^{-6})$ + $(1*2^{-7})$ + $(0*2^{-\cdots})$ = 1.7109375

Number:

 \bullet -1.7109375 * 2⁴ = -27.375

Floating Point Consequences

"Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0

For float: $\varepsilon \approx 10^{-7}$

- No such number as 1.00000001
- Rule of thumb: "almost 7 digits of precision"

For double: $\varepsilon \approx 2 \times 10^{-16}$

• Rule of thumb: "not quite 16 digits of precision"

These are all relative numbers

Just as decimal number system can represent only some rational numbers with finite digit count...

• Example: 1/3 cannot be represented

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5 cannot be represented

Beware of round-off error

- Error resulting from inexact representation
- Can accumulate
- Be careful when comparing two floating-point numbers for equality

<u>Decimal</u>	Rational
Approx	<u>Value</u>
.3	3/10
.33	33/100
. 333	333/1000

<u>Binary</u>	<u>Rational</u>
<u>Approx</u>	<u>Value</u>
0.0	0/2
0.01	1/4
0.010	2/8
0.0011	3/16
0.00110	6/32
0.001101	13/64
0.0011010	26/128
0.00110011	51/256
• • •	

Floating away ...

What does the following code print?

```
double sum = 0.0;
double i;
for (i = 0.0; i != 10.0; i++)
    sum += 0.1;
if (sum == 1.0)
    printf("All good!\n");
else
    printf("Yikes!\n");
```

A. All good!

B. Yikes!

C. (Infinite loop)

D. (Compilation error)

B: Yikes!

... loop terminates, because we can represent 10.0 exactly by adding 1.0 at a time.

... but sum isn't 1.0 because we can't represent 1.0 exactly by adding 0.1 at a time.