precep+ /5‘
Week 8 \AJea(/ThU

Princeton University
COS 217: Introduction to Programming Systems
C Variable Declarations and Definitions

Variable declaration is a statement that informs the compiler of the name, type, scope, linkage, and
duration of the variable. A variable definition is a declaration that causes the compiler to allocate memory.

Scope (compile-time concept

File: The variable is accessible within the file in which it is declared, from the point of declaration to the
end of the file.

Block: The variable is accessible within the block in which it is declared, from the point of declaration to
the end of the block.

Linkage (link-time concept)
External: The variable is accessible from multiple files.

Internal: The variable is accessible from only the file in which it is declared.

Duration (run-time concept)

Temporary: The variable exists only during the execution of the function or block in which it is declared.
Physically, the variable’s value is stored in the runtime Stack.

Process: The variable exists throughout the entire process. Physically, the variable’s value is stored in the
Data Section (if the programmer specifies an initial value) or the BSS Section (if the programmer does not
specify an initial value). The variable’s value is initialized at program startup. If in the BSS section, its
initial value is 0.

C Code Decl/Def Scope Linkage Duration Location
int a = 5; definition file external process
int b; definition* file external process
i & definition file external process
extern int d; declaration file external process 77?7
static int e = 5; definition file internal process
static int £; definition file internal process
void fun(int g) { definition block | internal temporary
int h = 5; definition block |[internal temporary
Sh ol e 5 definition block [internal temporary
sbemen—tat o+ | ILLEGAL
Fooea—tns I declaration | block | ?7? process 22?
static int 1 = 5; | definition block | internal process Data
static int m; definition block | internal process BSS
}

* Special rule: If a definition of b appears in another .c file, then this becomes a declaration.

Page 1 of 2

@

Examples of Global Variable Declarations and Definitions

Suppose a program consists of filel.c and file2.c (only). Consider these combinations of
global variable declarations and definitions:

Result
Reasonable combinations:
1 static int i = 5; static int i = 5; static def / static def => OK
2 static int i = 5; static int i; static def / static def => OK
3 static int i; static int i; static def / static def => OK
4 int i = 5; extern int i; def / decl => OK
5 int i; extern int i; def / decl => OK
Less reasonable combinations:
6 int 1 = 5; int i; def / decl => OK (by special rule)
7 int i; int i; def / decl => OK (by special rule)
8 int i = 5; static int i = 5; def / static def => OK
9 int i = 5; static int i; def / static def => OK
10 int i; static int i = 5; def / static def => OK
11 int i; static int i; def / static def => OK
Erroneous combinations:
12 int i = 5; int i = 5; def / def => error
13 extern int i; extern int i; decl / decl => error
14 extern int i; static int i = 5; decl / static def => error
15 extern int i; static int i; decl / static def => error

Copyright © 2010 by Robert M. Dondero, Jr.

Page 2 of 2

Princeton University
COS 217: Introduction to Programming Systems
C Function Declarations and Definitions

Function declaration
A statement that informs the compiler of the function’s signature (i.e., its name,
return type, number of parameters, types of parameters) and linkage. Has no
"body." Need not specify parameter names.

Function definition

A declaration that causes the compiler to generate executable code. Has a "body."
Specifies parameter names.

C Code Decl/Def Linkage Comment
int £1(int); declaration External Common
extern int £2(int); declaration External

static int £3(int); declaration Internal; f3 must be

defined in same
compilation unit

?nt f4 (int 1) definition External Common
e}

extern int £5(int 1) definition External Rare

{ ...}

static int £6(int i) definition Internal Common

{ ...}

Note: It is somewhat rare to use the ext ern keyword with a function declaration or
definition, just because extern is the default.

Copyright © 2007 by Robert M. Dondero, Jr.

Princeton University
COS 217: Introduction to Programming Systems
Complex C Declarations

The document shown below is retrieved from: https://cseweb.ucsd.edu/~gbournou/CSE131/rt_lt.rule.html.
It describes the "right-left rule," a technique for understanding and composing complex C declarations.

The "right-left" rule is a completely regular rule for deciphering C
declarations. It can also be useful in creating them.

First, symbols. Read

* as "pointer to" - always on the left side
[1 as "array of" - always on the right side
() as "function returning” - always on the right side

as you encounter them in the declaration.

Find the identifier. This is your starting point. Then say to yourself,
"identifier is." You've started your declaration.

Look at the symbols on the right of the identifier. 1If, say, you find " ()"
there, then you know that this is the declaration for a function. So you
would then have "identifier is function returning”. Or if you found a

"[]" there, you would say "identifier is array of". Continue right until
you run out of symbols *OR* hit a *right* parenthesis ")". (If you hit a
left parenthesis, that's the beginning of a () symbol, even if there

is stuff in between the parentheses. More on that below.)

Look at the symbols to the left of the identifier. If it is not one of our
symbols above (say, something like "int"), just say it. Otherwise, translate
it into English using that table above. Keep going left until you run out of
symbols *OR* hit a *left* parenthesis "(".

Now repeat steps 2 and 3 until you've formed your declaration. Here are some
examples:

int *pl1];
1) Find identifier. int *pll:
"o is"
2) Move right until out of symbols or left parenthesis hit.
int *pll:

"p is array of"

3) Can't move right anymore (out of symbols), so move left and find:
int *pll:;

"p is array of pointer to"
4) Keep going left and find:

int *pl[]l;

FAF S

"p is array of pointer to int".

Page 1 of 3

(or "p is an array where each element is of type pointer to int")

Another example:

int *(*func()) ();

1) Find the identifier. int *(*func()) ();:
"func is"

2) Move right. int *(*func()) ()

AR

"func is function returning”

3) Can't move right anymore because of the right parenthesis, so move left.
int *(*func()) ():

"func is function returning pointer to"

4) Can't move left anymore because of the left parenthesis, so keep going
right. int *(*func()) ():

AN

"func is function returning pointer to function returning”

5) Can't move right anymore because we're out of symbols, so go left.
int *(*func()) ()

A

"func is function returning pointer to function returning pointer to"

6) And finally, keep going left, because there's nothing left on the right.
int *(*func()) ();

AAA

"func is function returning pointer to function returning pointer to int".

As you can see, this rule can be quite useful. You can also use it to
sanity check yourself while you are creating declarations, and to give
you a hint about where to put the next symbol and whether parentheses

are required.

Some declarations look much more complicated than they are due to array

sizes and argument lists in prototype form. If you see "[3]", that's
read as "array (size 3) of...". If you see "(char *,int)" that's read
as "function expecting (char *,int) and returning...". Here's a fun
one:

int (*(*fun_one) (char *,double)) [9][20];
I won't go through each of the steps to decipher this one.
Ok. It's:

"fun_one is pointer to function expecting (char *,double) and
returning pointer to array (size 9) of array (size 20) of int."

As you can see, it's not as complicated if you get rid of the array sizes
and argument lists:

int (*(*fun_one) ()) [1[]:

You can decipher it that way, and then put in the array sizes and argument
lists later.

Some final words:
It is quite possible to make illegal declarations using this rule,
so some knowledge of what's legal in C is necessary. For instance,

if the above had been:

int *((*fun_one) ()) [1[];

Page 2 of 3

it would have been "fun one is pointer to function returning array of array of

ARRAAAAAAAAAAAAAANAAAAAAN

pointer to int". Since a function cannot return an array, but only a
pointer to an array, that declaration is illegal.

Illegal combinations include:

[1() - cannot have an array of functions

() () - cannot have a function that returns a function

(}[] - cannot have a function that returns an array
In all the above cases, you would need a set of parens to bind a *
symbol on the left between these () and [] right-side symbols in order

for the declaration to be legal.

Here are some legal and illegal examples:

int i; an int

int *p; an int pointer (ptr to an int)

int all: an array of ints

int £(): a function returning an int

int **pp; a pointer to an int pointer (ptr to a ptr to an int)

int (*pa)[]: a pointer to an array of ints

int (*pf) (): a pointer to a function returning an int

int *apl[l; an array of int pointers (array of ptrs to ints)

int aallll: an array of arrays of ints

int af[](): an array of functions returning an int (ILLEGAL)

int *fp(): a function returning an int pointer

int fa()I[1; a function returning an array of ints (ILLEGAL)

int ££() ()7 a function returning a function returning an int
(ILLEGAL)

int ***ppp: a pointer to a pointer to an int pointer

int (**ppa)ll: a pointer to a pointer to an array of ints

int (**ppf) () a pointer to a pointer to a function returning an int

int *(*pap)[1: a pointer to an array of int pointers

int (*paa)(](]: a pointer to an array of arrays of ints

int (*paf) [10); a pointer to a an array of functions returning an int
(ILLEGAL}

int *(*pfp) (); a pointer to a function returning an int pointer

int (*pfa) () [1: a pointer to a function returning an array of ints
(ILLEGAL)

int (*pff) () (): a pointer to a function returning a function
returning an int (ILLEGAL)

int **appll]; an array of pointers to int pointers

int (*apall)I[l; an array of pointers to arrays of ints

int (*apfll) () an array of pointers to functions returning an int

int *aap(]1I[]: an array of arrays of int pointers

int aaall(1[1: an array of arrays of arrays of ints

int aafl[]1[]1(): an array of arrays of functions returning an int
(ILLEGAL)

int *afpl]l(): an array of functions returning int pointers (ILLEGAL)

int afall () []; an array of functions returning an array of ints
(ILLEGAL)

int aff[]1 () (): an array of functions returning functions
returning an int (ILLEGAL)

int **fpp(); a function returning a pointer to an int pointer

int (*fpa())I[1; a function returning a pointer to an array of ints

int (*fpf()) (): a function returning a pointer to a function

returning an int

int *fap()I[1; a function returning an array of int pointers (ILLEGAL)
int faa () []1[]1s a function returning an array of arrays of ints
(ILLEGAL)
int faf () [1(); a function returning an array of functions
returning an int (ILLEGAL)
int *ffp() () a function returning a function

returning an int pointer (ILLEGAL)

Page 3 of 3

Review Activity Instructions:

Part 1: Determine the memory section (BSS, DATA or STACK) in the Location
column of the table for the boldface variablesa, b, e, £, g, h and
i in each line on Page 1 of the handouts.

Part 2: Interpret each of the following using the right-left rule:
int x[5];
int x(int);
int *x();
int *x[];
int (*x)0;
Part 3: Interpret each of the following using the cdecl command:
int x[5];
int x(int);
int *x();
int *x[];

int (*x)();

Review Activity Answers:

Part 1: Determine the memory section (BSS, DATA or STACK) in the Location
column of the table for the boldface variablesa, b, e, £, g, h and
i in each line on Page 1 of the handouts.

int a = 5; DATA (a is an explicitly initialized global variable)
int b; BSS (b is an uninitialized global variable)
static int e = 5; DATA (e is an explicitly initialized global variable)
static int £; BSS (£ is an uninitialized global variable)
void fun(int g){ STACK (g isa function argument)

int h; STACK (h is a local variable)

int i; STACK (i is a local variable)
}

Part 2: Interpret each of the following using the right-left rule:

int x[5]; X is an array of 5 int

int x(int); x is function accepting an int and returning an
int

int *x(); x is a function returning a pointer to an int

int *x[]; x is an array of pointer to int

int (*x)(); x is a pointer to a function returning int

Part 3: Interpret each of the following using the cdecl command:

int x[5]; declare x as array 5 of int

int x(int); declare x as function (int) returning int

int *x(); declare x as a function returning pointer to
int

int *x[1; declare x as array of pointer to int

int (*x) (); declare x as a pointer to a function returning

int

