
COS 217: Introduction to Programming Systems

Storage Hierarchy

Agenda

2

Storage and Locality

The storage hierarchy
Spatial and temporal
locality
Caching

Effective Caching
Block size
Eviction policy
Order of operations

Typical Storage Hierarchy

registers

main memory (RAM)

local secondary storage
(local disks, SSDs)

Larger
Slower

Cheaper
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk
blocks retrieved from local
disks

L1 cache

CPU registers hold words retrieved from
L1/L2/L3 cache

L1/L2/L3 cache holds cache lines
retrieved from main memory

Smaller
Faster

$$$$er
storage
devices Level 2 cache

Level 3 cache

3

Typical Storage Hierarchy

Factors to consider:
• Capacity
• Latency (how long to do a read)
• Bandwidth (how many bytes/sec can be read)

• Weakly correlated to latency: reading 1 MB from a hard disk
isn’t much slower than reading 1 byte

• Volatility
• Do data persist in the absence of power?

4

Typical Storage Hierarchy

Registers
• Latency: 0 cycles
• Capacity: 8-256 registers (31 general purpose registers in AArch64)

L1/L2/L3 Cache
• Latency: 1 to 40 cycles
• Capacity: 32KB to 32MB

Main memory (RAM)
• Latency: ~ 50-100 cycles

• 100 times slower than registers
• Capacity: GB

5
@christianw , @harrisonbroadbent

https://unsplash.com/@christianw
https://unsplash.com/@harrisonbroadbent

Typical Storage Hierarchy

Local secondary storage: disk drives

• Solid-State Disk (SSD):
• Flash memory (nonvolatile)
• Latency: 0.1 ms (~ 300k cycles)
• Capacity: 128 GB – 2 TB

• Hard Disk:
• Spinning magnetic platters, moving heads
• Latency: 10 ms (~ 30M cycles)
• Capacity: 1 – 10 TB

6
@benjaminlehman , Samsung Belgium

https://unsplash.com/@benjaminlehman
https://www.flickr.com/people/60952012@N06

Cache / RAM Latency

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

L1
L2

L3

DRAM

(L4)

1 clock = 3·10-10 sec
7

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

Disks

1 ns

1 µs

1 ms

Kb Mb Gb Tb

DRAM

HDD

SSD

8

Typical Storage Hierarchy

Remote secondary storage (a.k.a. “the cloud”)
• Latency: tens of milliseconds

• Limited by the speed of light (and network bandwidth)
• Capacity: essentially unlimited

9
@TheDigitalArtist

https://pixabay.com/users/thedigitalartist-202249/

Storage Device Speed vs. Size

Facts:
• CPU needs sub-nanosecond access to data to run instructions at full speed
• Fast storage (sub-nanosecond) is small (100-1000 bytes)
• Big storage (gigabytes) is slow (15 nanoseconds)
• Huge storage (terabytes) is glacially slow (milliseconds)

Goal:
• Need many gigabytes of memory,
• but with fast (sub-nanosecond) average access time

Solution: locality allows caching
• Most programs exhibit good locality
• A program that exhibits good locality will benefit from proper caching,

which enables good average performance

10

Locality

Two kinds of locality
• Temporal locality

• If a program references item X now,
then it probably will reference X again soon

• Spatial locality
• If a program references item X now,

then it probably will reference item at address X±1 soon

Most programs exhibit good temporal and spatial locality

11

Locality Example
Locality example

Temporal locality
• Data: Whenever the CPU accesses sum,

it accesses sum again shortly thereafter
• Instructions: Whenever the CPU executes sum += a[i],

it executes sum += a[i] again shortly thereafter
Spatial locality

• Data: Whenever the CPU accesses a[i],
it accesses a[i+1] shortly thereafter

• Instructions: Whenever the CPU executes sum += a[i],
it executes i++ (which are the next machine language instructions) shortly thereafter

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
Typical code
(good overall locality)

12

Agenda

13

Storage and Locality

The storage hierarchy
Spatial and temporal
locality
Caching

Effective Caching
Block size
Eviction policy
Order of operations

Caching

Cache
• Fast access, small capacity storage device
• Acts as a staging area for a subset of the items in a slow access, large capacity storage device

Good locality + proper caching
⇒ Most storage accesses can be satisfied by cache
⇒ Overall storage performance improved

14

Caching in a Storage Hierarchy

15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower device at
level k+1 is partitioned
into blocks

Level k+1:

4

Blocks copied
between levels

9 3
Smaller, faster device at
level k caches a subset of
the blocks from level k+1

Level k:
4 10

10

Cache Hits and Misses
Cache hit

• E.g., request for block 10
• Access block 10 at level k
• Fast!

Cache miss
• E.g., request for block 8
• Evict some block from level k
• Load block 8 from level k+1

to level k
• Access block 8 at level k
• Slow!

Caching goal:
• Maximize cache hits
• Minimize cache misses

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Level k:

Level k+1:

4

4 10

10

Level k is a cache
for level k+1

16

18

Do Exam Questions Exhibit Temporal Locality?
Here’s a real question from an old exam:

For caching in a memory hierarchy,
what is the best motivation for a larger cache block size?

A. Temporal Locality

B. Spatial Locality

C. Both

D. Neither

B
Spatial locality makes use of
subsequent data after a given
read, so having more data to
keep reading is a win.

Cache Block Size
Large block size:

+ do data transfer less often
+ take advantage of spatial locality
- longer time to complete data transfer
- less advantage of temporal locality

Small block size: the opposite
Typical: Lower in pyramid ⇒ slower data transfer ⇒ larger block sizes

Device Block Size
Register 8 bytes

L1/L2/L3 cache line 128 bytes

Main memory page 4KB or 64KB

Disk block 512 bytes to 4KB

Disk transfer block 4KB (4096 bytes) to
64MB (67108864 bytes)19

Cache Management

20

Device Managed by:
Registers
(cache of L1/L2/L3 cache and
main memory)

Compiler, using complex code-
analysis techniques
Assembly lang programmer

L1/L2/L3 cache
(cache of main memory)

Hardware, using simple
algorithms

Main memory
(cache of local sec storage)

Hardware and OS, using virtual
memory with complex algorithms
(since accessing disk is
expensive)

Local secondary storage (cache
of remote sec storage)

End user, by deciding which files
to download

Cache Eviction Policies

Best eviction policy: “oracle”
• Always evict a block that is never accessed again, or…
• Always evict the block accessed the furthest in the future
• Impossible in the general case

Worst eviction policy
• Always evict the block that will be accessed next!
• Causes thrashing
• Impossible in the general case!

21

Cache Eviction Policies

Reasonable eviction policy: LRU policy
• Evict the “Least Recently Used” (LRU) block

• With the assumption that it will not be used again (soon)
• Good for straight-line code
• (can be) bad for (large) loops
• Expensive to implement

• Often simpler approximations are used
• See Wikipedia “Page replacement algorithm” topic

22

Locality/Caching Example: Matrix Multiplication

Matrix multiplication
• Matrix = two-dimensional array
• Multiply n-by-n matrices A and B
• Store product in matrix C

Performance depends upon
• Effective use of caching (as implemented by system)
• Good locality (as implemented by you)

23

Two-dimensional arrays are stored in either row-major or column-major order

C uses row-major order
• Access in row order ⇒ good spatial locality
• Access in column order ⇒ poor spatial locality

Locality/Caching Example: Matrix Mult

18 19

21 22

20

23

24 25 26

0 1 2

0

1

2

18

19

21

22

20

23

24

25

26

a[0][0]

a[0][1]

a[0][2]

a[1][0]

a[1][1]

a[1][2]

a[2][0]

a[2][1]

a[2][2]

18

21

19

22

24

25

20

23

26

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

row-major col-major

a

24

Locality/Caching Example: Matrix Mult

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

c[i][j] += a[i][k] * b[k][j];

Reasonable cache effects
• Good locality for A
• Bad locality for B
• Good locality for C

25

a b c

i
k

k

j

i

j

Locality/Caching Example: Matrix Mult

Poor cache effects
• Bad locality for A
• Bad locality for B
• Bad locality for C

for (j=0; j<n; j++)

for (k=0; k<n; k++)

for (i=0; i<n; i++)

c[i][j] += a[i][k] * b[k][j];

26

a b c

i
k

k

j

i

j

Locality/Caching Example: Matrix Mult

Good cache effects
• Good locality for A
• Good locality for B
• Good locality for C

for (i=0; i<n; i++)

for (k=0; k<n; k++)

for (j=0; j<n; j++)

c[i][j] += a[i][k] * b[k][j];

27

a b c

k

j

i

j

i
k

28

Another ghost of exams past …
Suppose that C laid out arrays in column-major order instead of row-major order.

What would be the most efficient loop ordering for matrix multiplication
to maximize performance through good locality?

A. i k j (Same as row-major)

B. i j k

C. j k i

D. j i k

E. k i j

F. k j i

C: j k i

Exactly what makes this bad
for all three in row-major
makes it ideal for column-major:
a and c have good spatial
b has good temporal, spatial

for (i=0; i<n; i++)

for (k=0; k<n; k++)

for (j=0; j<n; j++)

c[i][j] += a[i][k] * b[k][j];

Next time …
Getting started with ARM!

29
Lobsterthermidor , Raysonho

https://commons.wikimedia.org/wiki/User:Lobsterthermidor
https://commons.wikimedia.org/wiki/User:Raysonho

