-

COS 217: Introduction to Programming Systems

~

Program Design Decisions

&
C Language Design (Logical Data)

% PRINCETON UNIVERSITY

-

Agenda

Simple C Programs
e charcount
e character I/0
e upper (ctype library)
e portability concerns
e char details

e upperl (switch statements, enums, functions)
* internal documentation (i.e., comments)

Two big differences from Java
 Variable declarations
e Logical operators

-

Recall: The charcount Program

The program: charcount.c

stdio.h Features (types, constants, variables)

$ man stdio.h

NAME
stdio.h -- standard buffered input/output

SYNOPSIS
#include <stdio.h>

DESCRIPTION

The <stdio.h> header shall define the following data types through typedef:
FILE A structure containing information about a file.
size_t As described in <stddef.h>.

The <stdio.h> header shall define the following macro which shall expand to an
integer constant expression with type int and a negative value:

EOF End-of-file return value.

The <stdio.h> header shall define the following macros which shall expand to
expressions of type "~ "pointer to FILE'' that point to the FILE objects associated,
respectively, with the standard error, input, and output streams:

stderr Standard error output stream.

stdin Standard input stream.

stdout Standard output stream.

stdio.h Features (functions)

$ man stdio.h
The following shall be declared as functions and may also be defined as macros.
Function prototypes shall be provided.
int fclose (FILE *);
int feof (FILE *);
int fflush (FILE *) ;
int fgetc (FILE *);
FILE *fopen (const char *restrict, const char *restrict);
int fprintf (FILE *restrict, const char *restrict, ...);
int fscanf (FILE *restrict, const char *restrict, ...);
int getc (FILE ¥*);
int getchar (void) ;
int printf (const char *restrict, ...);
int putc(int, FILE *);
int putchar (int) ;
int scanf (const char *restrict, ...);

-
Character Input/Output (I/0O) in C

Design of C:
e Does not provide 1/0 facilities in the language
 Instead provides |/0 facilities in standard library, declared in stdio.h
e Constant: EOF
e Data type: FILE (described later in course)
e Variables: stdin, stdout, and stderr
e Functions: ...

Reading characters
e getchar() function with return type wider than char (specifically, int)
e Returns EOF (a special non-character int) to indicate failure
 Reminder: there is no such thing as "the EOF character”

Writing characters

e putchar() function accepting one parameter
6 e For symmetry with getchar(), parameter is an int

/‘ IClicker Question

Q: There are other ways to charcount - which is best?

A for (c = getchar(); c¢ '= EOF; c = getchar())
' charCount++;

B while ((c = getchar()) !'= EOF)

charCount++;
for (;;) c = getchar()
{ ¢ = getchar(); while (c '= EOF)
i1f (c == EOF) { charCount++;
C. break; D. c = getchar()
charCount++; }
}

-

Recall: The upper Program

Functionality
e Read all chars from stdin
e Convert each lower-case alphabetic char to upper case
e Leave other kinds of chars alone
e Write result to stdout

stdin

stdout

Does this work? w ‘ r
It seems to work.J " uppe

DOES THIS WORK?
IT SEEMS TO WORK.

|

' What we need: character representation, 1/0

/

The C char Data Type

char is 1 byte - designed to hold a single character, but used for more

Mapping from char values to characters on pretty much all machines:
ASCIl (American Standard Code for Information Interchange) (/ '®ski/)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 NUL HT LF
16
32 SP ! " # $ % & ' () & it , - . /
48 0 1 2 3 4 5 6 7 8 9 : i < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y 2 [\] A
96 : a b c d e f g h i j k 1 m n
112 P q r s t u v W p 4 Y Z { | } =

Notes: Many non-printing characters left blank in table above

Lower-case and upper-case letters are 32 apart

-

upper Version 1

EBCDIC

11

Extended Binary Coded Decimal Interchange Code (/' ebszdzk/)

Partial map

-
Character Literals

Single quote syntax: 'a' is a value of type char with the value 97

Use backslash to write special characters
e Examples (with numeric equivalents in ASCII, EBCDIC):

'a' the a character (97, 129)

'A' the A character (65, 193)

'0! the zero character (48, 240)

'\0' the NUL (nullbyte) character (0, 0)
'\n' the newline character (10, 37)

'\t' the horizontal tab character (9, 5)
'"\\' the backslash character (92, 224)

'\''" the single quote character (39, 125)
rw the double quote character (34, 127)

12

-

An Al FAQ:

[abc"def\\"ghi"jk1/*mno*/pqr"stu,abc"def\\"ghi" jk1/*mno*/pqgr"stuy |

Could someone explain the last row? Why does the comment show when the string literal has ended at
'ghi'?

13

Christopher Moretti starf 1d

In the final line:

a, b, and c are "normal” (i.e., not inside a comment or a string).
the first " starts a string
d, e, f are inside the string

the first\ says "the next character isn't special! If it's a quote, it doesn't end the string, and if it's
a backslash it's not an escape character”

the second \ is not special, because it is the next character in question

the second ", thus, ends the string literal, because itis not escaped by the second \, since the
second \ is not special.

g, h,iare "normal"

the third " starts a new string

j. k, I are inside the string

/, * are ALSO inside the string, and thus do not begin a comment.
m through r are also inside the string

the fourth " closes the string

s, t, u, and newline are "normal”.

... thus everything is either "normal” or "inside the string", and so all characters are printed.
22 Reply Edit Delete -«

-

upper Version 2

14

EBCDIC

15

Extended Binary Coded Decimal Interchange Code

Note: Lower case not contiguous; same for upper case

Partial map

-

upper Version 3

16|

-
|> IClicker Question

Q: Is the if statement really necessary?

A. Gee, | don’'t know.
Let me check
the man page
(again)!

17

-

ctype.h Functions

18|

" a
|> IClicker Question

19

Q: Is the if statement really necessary?

A. Yes, necessary
for correctness.

B. Not necessary,
but I'd leave it in.

C. Not necessary,
and I'd get rid of it.

#include <stdio.h>
#include <ctype.h>
int main(void)
{
int c;
while ((c = getchar())
if (islower(c))
c = toupper(c) ;
putchar (c) ;
}

return 0O;

1= EOF) {

-
Aside: Unicode

Back in 1970s, English was the only language in the worldlcitation needed]

so we all used this alphabet [citation needed] -
B R R
ASC” ol e el al s e 2w [<[2> 2
i ———— [« [0
American Standard Code dzeEx BiDaEE
"1 ’ﬂ ,“ L';b:‘ .ﬂjssksclsnm‘nﬂo
4 I N O O 3

In the 215t century, it turns out f% A7 22 INCODe

/J)1] /J] 3L .'

for Information Interchange A SRR B
42233 L' ;l | JHER
-) ¢

there are other languages!

T : = 7 }/ AN N
) Q D 0 = = = o= o=
"‘(? " i F N A
3 . = . "o = -
l c i - T g F e FE
i ‘ - c ') v - » f=5 =
aremre I
5 P l /\ A x31) ==
| C o = o gy A
20 1 8 c0 A m w wm -

-

Modern Unicode

When C was designed, characters fit into 8 (really 7) bits, so C’'s chars are 8 bits long.
When Java was designed, Unicode fit into 16 bits, so Java’s chars are 16 bits long.

Then this happened:

1988: 2018:
1Y UNCODE” SHORRD | | @ s, s 46 || T Tery VeARs
s e e (| @R |
PROBLEMS CAUSED BY ~ THNGS GOT
INCOMPATIBLE BINARY | | o A e e A LIME
TEXT ENCODINGS. IMPACT OF THIS CRITICAL CRUSTACEAN, LEIRD OKAY?
s) IN MAINE AND ACROSS THE COUNTRY, \
\ YOURS TRULY,
.: SENATOR &3 ¥ % %

https://xkcd.com/1953/

21

Result: modern systems use variable length (UTF-8/16/32) encoding for Unicode.

J

https://xkcd.com/1953/

-
Recall: The upperl Program

Functionality

e Read all chars from stdin
e Capitalize the first letter of each word
o “cos 217 rocks” = “Cos 217 Rocks”

e Write result to stdout

stdin stdout
cos 217 rocks Cos 217 Rocks
Does this work? uPperl Does This Work?
It seems to work. It Seems To Work.

What we need: maintain extra information, namely “in a word” vs “not in a word”

* Need systematic way of reasoning about what to do with that information
22

23

upperl Version 3

#include <stdio.h>
#include <ctype.h>
enum Statetype {NORMAL, INWORD} ;

enum Statetype handleNormalState (int c)
{
enum Statetype state;
if (isalpha(c)) {
putchar (toupper (c)) ;
state = INWORD;
} else {
putchar (c) ;
state = NORMAL;
}

return state;

}

enum Statetype handleInwordState (int c)
{
enum Statetype state;
if ('isalpha(c)) {
putchar (c) ;
state = NORMAL;
} else {
putchar (c) ;
state = INWORD;
}

return state;

int main (void)

{

int c;
enum Statetype state = NORMAL;
while ((c = getchar()) != EOF) {

switch (state) {
case NORMAL:
state = handleNormalState (c) ;
break;
case INWORD:
state = handleInwordState (c) ;
break;
}
}

return 0O;

That’s an A-, at best.

No comments!

-

upperl Toward Final Version

24

Problem:
* The program works, but...
e No comments

Solution:
e Add (at least) function-level comments

-
Function Comments

Function comment should describe

what the function does (from the caller’s viewpoint)

e Data coming into the function
e Parameters, input streams

e Data going out from the function
e Return value, output streams, (call-by-reference parameters)

Function comment should not describe

N how the function works

-

Function Comment Examples

26|

Bad main() function comment

Read a character from stdin using getchar.
Depending upon the current DFA state, pass the
character to an appropriate state-handling
function. The value returned by the state-
handling function is the next DFA state. Repeat
until end-of-file. Return O.

Describes how the function works

Good main() function comment

Read text from stdin. Convert the first character
of each "word" to uppercase, where a word is a
sequence of non-whitespace. Write the result

to stdout. Return 0.

Describes what the function does
(from caller’s viewpoint)

27

upperl Final Comments

enum Statetype {NORMAL,

/* defines constants representing each state in the DFA */
INWORD} ;

/* Implement the NORMAL state of the DFA. c is the current
P
DFA character. Write c or its uppercase equivalent to
stdout, as specified by the DFA. Return the next state. */

enum Statetype handleNormalState (int c) ({

/* Implement the INWORD state of the DFA. c is the current
DFA character. Write c to stdout, as specified by the DFA.
Return the next state.

enum Statetype handleInwordState (int c) ({

/* Read text from stdin. Convert the first character of each
"word" to uppercase, where a word is a sequence of
letters. Write the result to stdout. Return 0. */

int main (void) {
/* Use a DFA approach. state indicates the DFA state. */
enum Statetype state = NORMAL;

-

Agenda

28|

Simple C Programs
e charcount
e character I/0
e upper (ctype library)
e portability concerns
e char details

e upperl (switch statements, enums, functions)
* internal documentation (i.e., comments)

Language Design: Two big differences from Java
 Variable declarations
e Logical operators

-

Declaring Variables

29|

C requires variable declarations.

Motivation:
* Declaring variables allows compiler to check “spelling”
e Declaring variables allows compiler to allocate memory more efficiently
e Declaring variables’ types produces fewer surprises at runtime
e Declaring variables requires more from the programmer
e Extra verbiage
e Type foresight
* “Do what | mean, not what | say”

(

Declaring Variables

C requires variable declarations.
e Declaration statement specifies type of variable (and other attributes t00)

Examples:

int 1i;

int i, j;

int 1 = 5;

const int i = 5; /* value of i cannot change */
static int i; /* covered later in course */
extern int i; /* covered later in course */

-
Declaring Variables

C requires variable declarations.

e Declaration statement specifies type of variable (and other attributes t00)

* Unlike Java, declaration statements in C89 must appear before
any other kind of statement in compound statement

int 1i; int 1i;
/* Non-declaration int j;
stmts that use i. */ /* Non-declaration
» stmts that use i. */
int j; "
/* Non-declaration /* Non-declaration
stmts that use j. */ stmts that use j. */

3 lllegal in C89 Legal in C89

-

Agenda

Simple C Programs

e upper (character data and /0, ctype library)
* portability concerns

e upperl (switch statements, enums, functions)
* DFA program design

Two big differences from Java

e \Variable declarations
* Logical operators

32

-
Logical Data Types

* No separate logical or Boolean data type

* Represent logical data using type char or int
e Or any primitive type! @

e Conventions: @lunarts

e Statements (if, while, etc.) use 0 = FALSE, #0 = TRUE
e Relational operators (<, >, etc.) and logical operators (!, &&, | |) produce the result O or 1

33

https://unsplash.com/@lunarts

-

Logical Data Type Shortcuts

34

Using integers to represent logical data permits shortcuts

It also permits some really bad code...

-
|> iClicker? More like iBrainteaser!

35|

Q: What is int i set to in the following code?

i= (A< (1<0))+ (> (L >0)) + ((i-i) < (i == i));

A. Depends on the initial value of i

B.O D.

C.1 If i is negative, thiswillbe 1 +0 + 1

D. 2 If i is non-negative, thiswillbe O+ 1 + 1
E.3

-
Logical Data Type Dangers

Beware: the following code will cause loss of sleep

.':;..nt i; What happens
in Java?

i=20;

if (i = 5)

statementl; What happens

in C?

36|

-
Next time ... numbers! (Bigger than 127.)

‘ Mick Haupt

J

https://unsplash.com/@rocinante_11

