COS302/SML305- Princeton University-Spring 2022 Assignment \# 9

Due: April 11, 2022 at 11:59 pm

Upload at: https://www.gradescope.com/courses/355863/assignments

Remember to append your Colab PDF as explained in the first homework, with all outputs visible. When you print to PDF it may be helpful to scale at 95% or so to get everything on the page.

Problem 1 (24 pts)

Let X and Y be random variables with a joint distribution P. Determine if the following statements are true or false. Justify your answers with examples or proofs.
(A) $P(X=x \mid Y) \leq P(X=x)$.
(B) $P(X=x \mid Y)$ is a random variable.
(C) $\mathbb{E}[X \mid Y=y]$ is a random variable.
(D) If X, Y are independent, then $\mathbb{E}[X Y]=0$.
(E) $\mathbb{E}[X Y] \leq \mathbb{E}[X] \mathbb{E}[Y]$.
(F) For any function f,

$$
\mathbb{E}\left[(Y-f(X))^{2}\right] \geq \operatorname{Var}(Y)
$$

Problem 2 (14pts)

Let X and Y be random variables with a joint probability density function $p(x, y)$. Show that

$$
\mathbb{E}_{X}[x]=\mathbb{E}_{Y}\left[\mathbb{E}_{X}[x \mid Y=y]\right]
$$

where the notation $\mathbb{E}_{X}[x \mid Y=y]$ denotes the expectation of X under the conditional distribution $P(X \mid Y=y)$.

Problem 3 (30pts)

In this problem, you will use the entire 50k-digit MNIST data set. To remind you, the data are 28×28 greyscale images of the digits 0 through 9. Download the mnist_full.pkl.gz file and load the file into a Colab notebook using code such as the following.

```
import pickle as pkl
import numpy as np
import gzip
with gzip.open('mnist_full.pkl.gz, 'rb') as fh:
    mnist = pkl.load(fh)
```

This will result in a dictionary mnist with keys and values that should be self-explanatory. Use this data to solve the problems below. Note: It is possible that when solving the problems below, you will encounter issues when the covariance matrix is not positive definite. To solve this issue, you can add a small value to the diagonal of the covariance matrix; i.e., set $\tilde{\Sigma}=\Sigma+\alpha I$, for $\alpha \approx 10^{-6}$.
(A) Compute the empirical mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$ of the training images.
(B) Reshape and display the mean as an image using imshow.
(C) Generate 5 samples from the multivariate Gaussian with parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ from (A). Do this only using numpy. random. randn and linear algebra operations. Reshape and display these samples using imshow.
(D) Now iterate over each of the possible labels from 0 to 9 . Compute the mean and covariance of the training data that have that label. Here's a sketch of some code for obtaining the correct images.

```
for label in range(10):
    indices = train_labels == label
    images = train_images[indices ,:]
```

Display the mean of each as an image, and generate 5 samples from the Gaussian distribution with the label-specific mean and covariance. Make a plot of these samples.

Problem 4 (30pts)

Consider the following joint distribution over random variables X and Y.

Compute the following quantities in a Colab notebook. Remember to compute these quantitites in bits which means using base 2 for logarithms. To get started, here the probability mass function (PMF) in Python.

$$
\left.\begin{array}{r}
\text { PXY = np. array }\left(\begin{array}{llll}
{[} & {[0.01,} & 0.02, & 0.03,
\end{array}\right) 0.1,0.1
\end{array}\right],
$$

(A) What is the entropy $H(X)$?
(B) What is the entropy $H(Y)$?
(C) What is the conditional entropy $H(X \mid Y)$?
(D) What is the conditional entropy $H(Y \mid X)$?
(E) What is the joint entropy $H(X, Y)$?
(F) What is the mutual information $I(X ; Y)$? Compute the mutual information once using the PMF and then once using relationships between the quantities you used in (A)-(E) to verify your answer.

Problem 5 (2pts)

Approximately how many hours did this assignment take you to complete?

My notebook URL: https://colab.research.google.com/Xxxxxxxxxxxxxxxxxxxxxxx

