
COS302/SML305 – Princeton University, Spring 2022
Assignment #2

Due: February 7, 2022 at 11:59pm

Upload at: https://www.gradescope.com/courses/214271/assignments/1003646

Remember to append your Colab PDF as explained in the first homework, with all outputs visible.
When you print to PDF it may be helpful to scale at 95% or so to get everything on the page.

Problem 1 (23pts)
Imagine that you have an old-fashioned balance scale as shown below.

You have five objects of unknown mass 𝑚1,𝑚2,𝑚3,𝑚4,𝑚5. You would like to find the mass of each of these
objects using the scale. If you put one or more of the objects on each side of the scale, you will be able to measure
the difference in weight. This scale does not work, however, if one side is left empty.

(A) You make a measurement of objects {1, 3} against objects {4, 5} and get a difference of 3kg. Write this as
a linear equation for the masses.

(B) What is the minimum number of such measurements necessary to recover all five masses?

(C) If the answer to the above question is 𝑁 , come up with 𝑁 − 1 measurements that, when combined with the
answer to (A) above would make it possible to recover the masses.

(D) What would A and b be in the matrix form of the linear system corresponding to the 𝑁 measurements?
That is, if you were to set this up as Am = b where m is the vector of unknown masses. Denote the result
of the 𝑖th measurement as 𝑏𝑖 . (Typeset these using the bmatrix environment.)

1

https://www.gradescope.com/courses/214271/assignments/1003646
https://www.overleaf.com/learn/latex/Matrices

Problem 2 (25pts)
The core library for numerical computation in Python is called NumPy. NumPy provides useful abstractions
to create and manipulate multidimensional arrays (e.g., vectors, matrices, tensors), and functions that are thin
layers over high-performance C/C++/Fortran BLAS and LAPACK libraries. Conventionally you would start your
numeric Python code with an import numpy as np. The most basic object is the NumPy array, which is a
multi-dimensional array usually made up of type double, i.e., 64-bit floating point numbers. A vector is usually
a one-dimensional array and a matrix is a two-dimensional array:

examp l e_vec t o r = np . a r r a y ([5 0 . 0 , 1 . 4 , 0 . 4 , 0 . 2 3 , 1 . 0 4])
examp le_ma t r i x = np . a r r a y ([[3 . 4 , 1 . 1 0 , 0 . 8] ,

[4 . 2 , 1 00 . 0 , −1 . 4] ,
[1 . 1 , 0 . 4 4 , 9 . 4]])

Higher-dimensional arrays (tensors) are possible, but come up less often than vectors and matrices. The tuple
made up of the size each dimension is called the shape and can be accessed as an attribute, so:

p r i n t (e x amp l e_vec t o r . shape , examp le_ma t r i x . shape)
Outpu t : (5 ,) (3 , 3)

Create a Colab notebook following the same pattern as the previous assignment, and do the following:

(A) Use arange to create a variable named foo that stores an array of numbers from 0 to 29, inclusive. Print
foo and its shape.

(B) Use the reshape function to change foo to a validly-shaped two-dimensional matrix and store it in a
new variable called bar. Print bar and its shape.

(C) Create a third variable, baz that reshapes it into a valid three-dimensional shape. Print baz and its shape.

(D) There are several different ways to index into NumPy arrays. Use two-dimensional array indexing to set the
first value in the second row of bar to -1. Now look at foo and baz. Did they change? Explain what’s
going on. (Hint: does reshape return a view or a copy?)

(E) Another thing that comes up a lot with array shapes is thinking about how to aggregate over specific
dimensions. Figure out how the NumPy sum function works (and the axis argument in particular) and
do the following:

(i) Sum baz over its second dimension and print the result.
(ii) Sum baz over its third dimension and print the result.
(iii) Sum baz over both its first and third dimensions and print the result.

(F) Along with shaping and indexing, we also do a lot of slicing which is where you index with ranges to get
subvectors and sometimes submatrices. Write code to do the following:

(i) Slice out the second row of bar and print it.
(ii) Slice out the last column of bar using the -1 notation and print it.
(iii) Slice out the top right 2 × 2 submatrix of bar and print it.

2

https://numpy.org/
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
https://docs.scipy.org/doc/numpy/user/basics.indexing.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
https://scipy-cookbook.readthedocs.io/items/ViewsVsCopies.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Problem 3 (25pts)
One feature of NumPy that is powerful but tricky is the ability to perform broadcasting, which really just refers to
repeatedly performing an operation over one or more dimensions. Start a new problem in your Colab notebook
and when you’re done with the entire assignment, follow the same procedure for appending a PDF and inserting
the URL as you did in the previous assignment. The notebook URL is near the end of the assignment.

(A) The most basic kind of broadcast is with a scalar, in which you can perform a binary operation (e.g., add,
multiply, ...) on an array and a scalar, the effect is to perform that operation with the scalar for every element
of the array. To try this out, create a vector 1, 2, . . . , 10 by adding 1 to the result of the arange function.

(B) Now, create a 10 × 10 matrix A in which 𝐴𝑖 𝑗 = 𝑖 + 𝑗 . You’ll be able to do this using the vector you just
created, and adding it to a reshaped version of itself.

(C) A very common use of broadcasting is to standardize data, i.e., to make it have zero mean and unit variance.
First, create a fake “data set” with 50 examples, each with five dimensions.

impo r t numpy . random as npr
d a t a = np . exp (npr . r andn (5 0 , 5))

You don’t worry too much about what this code is doing at this stage of the course, but for completeness: it
imports the NumPy random number generation library, then generates a 50 × 5 matrix of standard normal
random variates and exponentiates them. The effect of this is to have a pretend data set of 50 independent
and identically-distributed vectors from a log-normal distribution.

(D) Now, compute the mean and standard deviation of each column. This should result in two vectors of length
5. You’ll need to think a little bit about how to use the axis argument to mean and std. Store these
vectors into variables and print both of them.

(E) Now standardize the data matrix by 1) subtracting the mean off of each column, and 2) dividing each
column by its standard deviation. Do this via broadcasting, and store the result in a matrix called
normalized. To verify that you successfully did it, compute the mean and standard deviation of
the columns of normalized and print them out.

3

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html
https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std

Problem 4 (25pts)
Fairly often in machine learning and other disciplines that use linear algebra to formalize computational problems,
you see explicit matrix inverses like A−1b in papers and books. Of course, you learn in linear algebra classes how
to perform such an inverse, and in the NumPy linear algebra library you’ll see a function that will compute the
inverse. It seems sensible right? And it’s right there on the page: Invert the matrix A and then multiply by the
vector b. How hard can it be?

Well... don’t do that. When you see A−1b you should read that as “the x that is the result of solving the linear
system Ax = b”. You should use something like the solve function in the NumPy linear algebra package. If you
have to solve multiple such systems with the same matrix, you might think about performing an LU decomposition,
a topic we’ll return to in a couple of weeks.

The issue is one of numerical stability, which boils down to the fact that 1) floating point numbers on computers
don’t have infinite precision, and 2) some quantities (e.g., infinite sums or numerical integrals) require us to
truncate and approximate if we want the computation to complete. These issues are deep and this course won’t
delve into them significantly. However, the “explicit inverse” issue is worth looking at just to see an example.

(A) A Vandermonde matrix is a matrix generated from a vector in which each column of the matrix is an integer
power starting from zero. So, if I have a column vector [𝑥1, 𝑥2, . . . , 𝑥𝑁]𝑇 , then the associated (square)
Vandermonde matrix would be

V =

1 𝑥1 𝑥2

1 𝑥3
1 · · · 𝑥𝑁−1

1
1 𝑥2 𝑥2

2 𝑥3
2 · · · 𝑥𝑁−1

2
...

...
...

...
. . .

...
1 𝑥𝑁 𝑥2

𝑁
𝑥3
𝑁

· · · 𝑥𝑁−1
𝑁

Use what you learned about broadcasting in the previous problem to write a function that will produce a
Vandermonde matrix for a vector [1, 2, . . . , 𝑁]𝑇 for any 𝑁 . Do it without using a loop. Here’s a stub to get
you started:

de f vandermonde (N) :
vec = np . a r ange (N) +1
F i n i s h me .

Use your function for 𝑁 = 12, store it in variable named vander, and print the result.

(B) Now, let’s make a pretend linear system problem with this matrix. Create a vector of all ones, of length 12
and call it x. Perform a matrix-vector multiplication of vander with the vector you just created and store
that in a new vector and call it b. Print the vector b.

(C) First, solve the linear system the naïve way, pretending like you don’t know x. Import numpy.linalg,
invert V and multiply it by b. Print out your result. What should you get for your answer? If the answer is
different than what you expected, write a sentence about that difference.

(D) Now, solve the same linear system using solve. Print out the result. Does it seem more or less in line
with what you’d expect?

4

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.lu.html
https://en.wikipedia.org/wiki/Numerical_stability
https://en.wikipedia.org/wiki/Vandermonde_matrix
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve

Problem 5 (2pts)
Approximately how many hours did this assignment take you to complete?

My notebook URL: https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

5

https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

