COS302/SML305- Princeton University-Spring 2022
 Assignment \#10

Due: 11:59pm April 20, 2022
Upload at: https://www.gradescope.com/courses/355863

Remember to append your Colab PDF as explained in the first homework, with all outputs visible. When you print to PDF it may be helpful to scale at 95% or so to get everything on the page.

Problem 1 (16pts)

Consider the following scalar-valued function

$$
f(x, y, z)=x^{2} y+\sin (z+6 y)
$$

where $x, y, z \in \mathbb{R}$.
(A) Compute partial derivatives with respect to x, y, and z.
(B) We can consider f to take a vector $\boldsymbol{\theta} \in \mathbb{R}^{3}$ as input where $\boldsymbol{\theta}=[x, y, z]^{T}$. Compute the gradient $\nabla_{\boldsymbol{\theta}} f$. Evaluate $\nabla_{\boldsymbol{\theta}} f$ at $\boldsymbol{\theta}=\left[3, \frac{\pi}{2}, 0\right]^{T}$.

Problem 2 (16pts)

In this problem, you will demonstrate Clairaut's Theorem, which states that in general, the order in which one computes partial differentiates does not matter. Consider the following scalar-valued function,

$$
f(x, y)=x \sin (x y)
$$

where $x, y \in \mathbb{R}$.
(A) Compute $\frac{\partial}{\partial x} \frac{\partial}{\partial y} f(x, y)$. This means we first compute the partial derivative of f with respect to y, then compute the partial derivative of the resulting function with respect to x. This is sometimes denoted $\partial_{x y} f$.
(B) Compute $\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y)$.

The correct answers for parts (A) and (B) should be the same, which demonstrates Clairaut's Theorem. This theorem holds more generally for functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n variables. This theorem is useful since it's sometimes more convenient/efficient to computation partial derivatives in a specific order.

Problem 3 (16pts)

In gradient descent, we attempt to minimize some function $f(x)$ by iteratively updating the parameter $x \in \mathbb{R}^{n}$ according to the following formula:

$$
x_{t+1}=x_{t}-\lambda\left(\nabla_{x} f\left(x_{t}\right)\right)^{T}
$$

where $\lambda \geq 0$ is a small value known as the learning rate or step size. This formula says to update x so as to move in a direction proportional to the negative gradient.

Consider the function $f(x)=x^{T} A x$ where $A \in \mathbb{R}^{n \times n}$ is a matrix.
(A) Implement a function $f(A, x)$ that takes as input an $n \times n$ numpy array A and a 1 D array x of length n and returns the output $x^{T} A x$.
(B) Implement a function grad_f (A, x) that takes the same two arguments as above but returns $\nabla_{x} f(x)$ evaluated at x .
(C) Now implement a third and final function grad_descent (A, x, lr, num_iters) that takes the additional arguments $1 r$, representing the learning rate λ above, and num_iters indicating the total number of iterations of gradient descent to perform. The function should output, via either printing or plotting, the values of x_{t} and $f\left(x_{t}\right)$ at each iteration of gradient descent.
(D) Use the function you wrote in part (C) to perform gradient descent on f with $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$. Set each element of the initial x_{0} to any value with magnitude between 10 and 100 of your choosing. Run gradient descent for 50 iterations with learning rates $\lambda=1,0.25,0.1$, and 0.01 . What do you notice? Does x_{t} always converge to the same value? Does our gradient descent algorithm work every time?

Problem 4 (18pts)

Consider the following vector function from \mathbb{R}^{3} to \mathbb{R}^{3} :

$$
\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{c}
\sin \left(x_{1} x_{2} x_{3}\right) \\
\cos \left(x_{2}+x_{3}\right) \\
\exp \left\{-\frac{1}{2}\left(x_{3}^{2}\right)\right\}
\end{array}\right]
$$

(A) Compute the Jacobian matrix of $f(x)$?
(B) Write the determinant of this Jacobian matrix as a function of \boldsymbol{x}.
(C) Is the Jacobian a full rank matrix for all of $x \in \mathbb{R}^{3}$? Explain your reasoning.

Problem 5 (16pts)

Compute the gradients for the following expressions. (You can use identities, but show your work.)
(A) $\nabla_{x} \operatorname{trace}\left(x x^{T}+\sigma^{2} I\right) \quad$ Assume $x \in \mathbb{R}^{n}$ and $\sigma \in \mathbb{R}$.
(B) $\nabla_{x} \frac{1}{2}(x-\mu)^{T} \boldsymbol{\Sigma}^{-1}(x-\mu) \quad$ Assume $x, \mu \in \mathbb{R}^{n}$ and invertible symmetric $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times n}$.
(C) $\nabla_{x}(c-A x)^{T}(c-A x) \quad$ Assume $x \in \mathbb{R}^{n}, c \in \mathbb{R}^{m}$ and $A \in \mathbb{R}^{m \times n}$.
(D) $\nabla_{x}(\boldsymbol{c}+\boldsymbol{A} \boldsymbol{x})^{T}(\boldsymbol{c}-\boldsymbol{B} \boldsymbol{x}) \quad$ Assume $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{c} \in \mathbb{R}^{m}$ and $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times n}$.

Problem 6 (16pts) (A) The sigmoid function $f: \mathbb{R} \rightarrow \mathbb{R}$ (also called the logistic function) is defined to be:

$$
\begin{equation*}
f(z)=\frac{1}{1+e^{-z}} \tag{1}
\end{equation*}
$$

Compute the derivative of the sigmoid function, i.e., $f^{\prime}(z)$. Verify that $f^{\prime}(z)=f(z)(1-f(z))$
(B) The cost function of logistic regression, a very popular machine learning model, has the following form:

$$
\begin{equation*}
c(\boldsymbol{\theta}, \boldsymbol{x}, y)=-y \log \left(\frac{1}{1+e^{-\boldsymbol{\theta}^{\top} x}}\right)-(1-y) \log \left(1-\frac{1}{1+e^{-\boldsymbol{\theta}^{\top} x}}\right) \tag{2}
\end{equation*}
$$

where $\boldsymbol{\theta} \in \mathbb{R}^{d}, x \in \mathbb{R}^{d}, y \in \mathbb{R}$. Compute $\frac{\partial c(\theta, x, y)}{\partial \theta}$, the partial derivative with regards to θ. Verify that $\frac{\partial c(\theta, x, y)}{\partial \theta}=\left(f\left(\boldsymbol{\theta}^{\top} \boldsymbol{x}\right)-y\right) \boldsymbol{x}^{\top}$.

Problem 7 (2pts)

Approximately how many hours did this assignment take you to complete?

My notebook URL: https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

