

Overview. This worksheet has worked examples for the running time analysis of small pieces of code, by
counting the number of performed operations.

To get the full benefit, go through the examples in the same order they are presented and avoid looking at the
solutions and explanations until you have tried to find the running time on your own.
You will find at the end of the worksheet a summary of basic summations and logarithms rules, which are
helpful when analyzing running times for simple pieces of code.

Single Loops

 COS226 Analysis of Algorithms: Practice Examples Spring ‘20

Ex.1

Ex.2

Ex.3

Ex.4

Ex.5 Solution. .

This is because .

Θ(n)
n × n = n

Solution. .

The loop will multiply by 3 until

. Solving for i, we get .

Θ(log n)
i = 10

10 × 3i ≥ n + 5 i = log3
n + 5

10

Solution. .

op() is called exactly times.

Θ(n)
(n + 5 − 10)/2

Solution. .

. We can drop the coefficient and

ignore the base.

Θ(log n)
log2 n3 = 3 log2 n

Solution. .

The number of steps needed to get from 1 to n by
doubling or from n to 1 by halving is .
The base is not important when using the order of
growth notation, since logs with different bases are
a constant factor away from each other.
(See A.6 in the Math Cheat Sheet at the end).

Θ(log n)

log2 n

Question. For each of the following pieces of code, find the number of times op() is called as a function of the
input size n. Express your answer in terms of the Big-Theta notation.

for (i = 10; i < n + 5; i += 2)
 op();

for (i = 1; i < n; i *= 2)
 op();

for (i = n; i > 1; i /= 2)
 op();

for (i = 0; i * i < n; i++)
 op();

for (i = 10; i < n + 5; i *= 3)
 op();

for (i = 0; i < n * n * n; i *= 2)
 op();

Nested Independent Loops

Nested Dependent Loops

 COS226 Analysis of Algorithms: Practice Examples Spring ‘20

Ex.6

Ex.7

Ex.8

Solution. .

op() is called times, but we ignore the
coefficient.

Θ(n)
100n

Solution. .

At each iteration of the outer loop, the first inner
loop runs and then the second inner loop runs.
Therefore, op() is called

 times, which is in the order of .

Θ(n2)

n × (n + log n)
= n2 + n log n n2

Solution. .

op() is called exactly

times.

Θ(n2)
(n − 10) ×

n
2

= 1
2 n2 − 5n

Ex.9

Therefore, op() is called times. This can be represented as a summation:

1 + 2 + … + n

n

∑
i=0

i =
n(n + 1)

2

Solution. .
The inner loop performs 1 iteration when

, and 2 iterations when , etc.

Θ(n2)

i = 1 i = 2

Explanation. To understand why Eq. 1 is true, note that if we add the numbers twice, we get:

In other words, , which can be re-organized to give Eq. 1

We can also think of this visually as follows: How many blue circles for ?

 rows and columns
 area
 blue circles

0 + 1 + … + (n − 1) + n
+ n + (n − 1) + … + 1 + 0
= n + n + … + n + n

2 × (0 + 1 + … + n) = n × (n + 1)

n = 4
n n + 1

= n × (n + 1)
= 1

2 × n × (n + 1)

for (i = 10; i < n; i++)
 for (j = 0; j < n; j += 2)
 op();

for (i = 0; i < n; i++)
 for (j = 0; j < 100; j++)
 op();

for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 op();

 for (j = 1; j < n; j *= 2);
 op();
}

for (i = 1; i <= n; i++)
 for (j = 1; j <= i; j ++)
 op();

Eq. 1

n +1 terms

 COS226 Analysis of Algorithms: Practice Examples Spring ‘20

Ex.10

Ex.11

Therefore, op() is performed times. This can be represented as a summation:

 , which equals to = (using Eq. 1)

Simplifying the result and dropping the coefficients and lower order terms leads to .

1 + 2 + … + (n2 − 10)

n2−10

∑
i=0

i
(n2 − 10) × ((n2 − 10) + 1)

2

n4

Solution. .
The inner loop performs 1 iteration when
 , and 2 iterations when , etc.

Θ(n4)

i = 1 i = 2

Solution. .
When , op() is performed times, when
i=2, op() is performed times, etc. Hence
the total number of times op() is performed is:

Θ(n3)
i = 1 1 × 1

2 × 2

Explanation.
To understand why this summation is in the order of , consider the following two observations:

1. Upper bound:

Therefore, the order of growth is not more than

2. Lower bound:

Therefore, the order of growth is not less than .

Since we drop constant coefficients, the upper and lower bounds imply that the order of growth is .

See B.6 in the math cheat sheet for the exact closed form of this summation.

12 + 22 + 32 + … + n2 =
n

∑
i=1

i2 ∼ 1
3 n3

n3

n3 .

1
8 n3

n3

for (i = 1; i <= n * n - 10; i++)
 for (j = 1; j <= i; j ++)
 op(m);

for (i = 1; i <= n; i++)
 for (j = 1; j <= i; j++)
 for (k = 1; k <= i; k++)
 op();

12 + 22 + … + n2 ≥ (n
2)2 + ((n

2 + 1)2) + … + n2

≥ (n
2)2 + (n

2)2 + … + (n
2)2

≥ n
2 × (n

2)2

12 + 22 + … + n2 ≤ n2 + n2 + … + n2

≤ n × n2

Eq. 2

Considering only the 2nd
half of the summation.

 COS226 Analysis of Algorithms: Practice Examples Spring ‘20

Ex.12

Ex.13

However, i takes all the values from . Therefore, the total number of times op() is called is:

 (using Eq. 1)

Dropping lower order terms, we are left with , which is in the order of (using Eq. 2).

1 → n
n

∑
i=1

i

∑
j=1

j =
n

∑
i=1

i(i + 1)
2

=
n

∑
i=1

1
2 i2+ 1

2 i = 1
2

n

∑
i=1

i2+ 1
2

n

∑
i=1

i

1
2

n

∑
i=1

i2 n3

Solution. .

op() is called 1 time when , 2 times when

, etc. Therefore, op() is called times.

Θ(n3)
j = 1

j = 2
i

∑
j=1

j

Solution. .

The inner loop performs 1 iteration when

, and 2 iterations when , etc.

Θ(n)

i = 1 i = 2

Therefore, op() is called times, because doubles in each iteration of the outer
loop. This equals to , where and can be represented as a summation:

Using the identity , we can represent the answer as
Using the identity , we can represent the answer as ,
which is in the order of n.

Explanation.
This is a geometric sum that can be calculated using the geometric sum formula:

where and in this exercise. The following is a visual explanation for this special case:

1 + 2 + 4 + … + n i
20 + 21 + … + 2k 2k = n

lg n

∑
k=0

2k = 2lg n+1 − 1 ∼ 2n

am × an = am+n 21 × 2lg n − 1

x lg y = ylg x 21 × nlg 2 − 1 = 21 × n1 − 1

m

∑
i=0

ri =
rm+1 − 1

r − 1

m = lg n r = 2

20

21

3
= 22 − 1

20

21

22

7
= 23 − 1

20

21

22

23

15
= 24 − 1

for (i = 1; i <= n; i++)
 for (j = 1; j <= i; j++)
 for (k = 1; k <= j; k++)
 op();

for (i = 1; i <= n; i *= 2)
 for (j = 1; j <= i; j++)
 op();

Eq. 4

Eq. 3

 COS226 Analysis of Algorithms: Practice Examples Spring ‘20

Ex.14

Ex.15

Ex.16

Therefore, op() is called , which can be represented as the summation:

This is n multiplied by a Harmonic Number. Harmonic numbers can be approximated by turning the
summation into an integral:

Hence, the total is .

n
1

+
n
2

+ … +
n
n

n

∑
i=1

n
i

= n ×
n

∑
i=1

1
i

n

∑
i=1

1
i

∼ ∫
n

1

1
i

di = ln n

∼ n ln n

Therefore, op() is called times. Using the identity , we
can rewrite the summation as: .

Using Stirling’s Approximation:

lg 1 + lg 2 + … + lg n log(a b) = log a + log b
lg 1 + lg 2 + … + lg n = lg(1 × 2 × . . . × n) = lg(n!)

lg(n!) ∼ n lg n

Solution. .

The inner loop performs iterations when

, and iterations when , etc.

Θ(n log n)
n
1

i = 1 n
2 i = 2

Solution. .

There are two independent inner loops:

• The first inner loop combined with the outer
loop are identical to the one in Ex.15, which
runs in the order of .

• The second inner loop combined with the
outer loop are identical the one in Ex.9, which
runs in the order of .

The total is , which is order .

Θ(n2)

n log n

n2

n log n + n2 n2

Solution. .

The inner loop performs iterations when

, and iterations when , etc.

Θ(n log n)
lg 1

i = 1 lg 2 i = 2

for (i = 1; i <= n; i++)
 for (j = 1; j < i; j *= 2)
 op();

Eq. 5

for (i = 1; i <= n; i++)
 for (j = 1; j <= n; j += i)
 op();

Eq. 6

for (i = 1; i <= n; i++) {
 for (j = 1; j <= n; j += i)
 op();

 for (j = 1; j <= i; j++)
 op();
}

Recursive Algorithms

 COS226 Analysis of Algorithms: Practice Examples Spring ‘20

Ex.17

Ex.18

Ex.19

Ex.20

Ex.21 Solution. .
Consider the following visualization for the
recursive calls:

Θ(n)

Solution. .

op() is executed times for f(n) and
times for f(n-1), etc. This means that op() is
executed times.
From Eq. 1, we know this is in the order of .

Θ(n2)
n n − 1

n + (n − 1) + … + 1
n2

Solution. .

op() is executed once in each of the
recursive calls for .
These are exactly calls.

Θ(n)

n , n − 1, …, 2, 1
n

op() is performed once in each recursive call.
The total number of calls to op() is

, which is in the order of
(see Eq.3).
20 + 21 + 22 + … + 2lg n n

Solution. .

op() is executed times for f(n) and times
for f(n/2), etc. This means that op() is
executed times. This can be

written as , which is in the

order of (See B.8 in the cheat sheet at the end).

Θ(n)
n n

2

n +
n
2

+
n
4

+ … + 1

n × (1+ 1
2 + 1

4 +…+ 1
n)

n

Solution. .

op() is executed once in each of the
recursive calls for .

These are calls.

Θ(log n)

n ,
n
2

,
n
4

, …, 2, 1

lg n

void f(int n) {
 if (n == 0) return;
 op();
 f(n-1);
}

void f(int n) {
 if (n == 0) return;
 for (int i = 0; i < n; i++)
 op();
 f(n-1);
}

void f(int n) {
 if (n == 1) return;
 op();
 f(n/2);
}

void f(int n) {
 if (n == 0) return;
 for (int i = 0; i < n; i++)
 op();
 f(n/2);
}

void f(int n) {
 if (n == 0) return;
 op();
 f(n/2);
 f(n/2);
}

21

22

2lg n

20

…

op() callsf(n)

f(n
2) f(n

2)

f(n
4) f(n

4) f(n
4) f(n

4)

f(n
n) f(n

n)

op() calls

op() calls

op() calls

 COS226 Analysis of Algorithms: Practice Examples Spring ‘20

Ex.22

Ex.23

Ex.24

Solution. .

In each call to f(n), op() is performed a number of
times that depends on the value of the argument .
The visualization below shows the value of in each
of the recursive calls and the number of times op() is
performed at each level of the recursion tree.
The recursion tree has levels, and op() is
performed a total of times at each level. Therefore,
the order of growth is .

Θ(n lg n)

n
n

lg n + 1
n
n lg n

Solution. .

This is the same as Ex.23, but the height of the tree
is instead of . The number of times op()
is performed at each level is still . Therefore, the
total is and the order of growth is .

Θ(n log n)

log4 n log2 n
n

n log4 n n log n

Solution. .

As in Ex.21, f(n) produces a binary tree, but with

 levels instead of levels. Since op() is
performed once in each recursive call, the total
number of times op() is performed is:

.

From Eq.4, we know this is ,
which is in the order of .

Θ(2n)

n + 1 lg n + 1

20 + 21 + 22 + … + 2n

2n+1 − 1 = 21 × 2n − 1
2n

n
2 + n

2 = n

n × n
n = n

n

…

op() callsf(n)

f(n
2) f(n

2)

f(n
4) f(n

4) f(n
4) f(n

4)

f(n
n) f(n

n)

op() calls

op() calls

op() calls

4 × n
4 = nlg

n
+

1

void f(int n) {
 if (n == 0) return;
 for (int i = 0; i < n; i++)
 op();
 f(n/2);
 f(n/2);
}

void f(int n) {
 if (n == 0) return;
 for (int i = 0; i < n; i++)
 op();
 for (int i = 0; i < 4; i++)
 f(n/4);
}

void f(int n) {
 if (n == 0) return;
 op();
 f(n-1);
 f(n-1);
}

A. Logarithms Notation: 

1.

2. ,

3.

4.

5.

6.

7.

8.

9.

 (no base) used with
orders of growth to indicate
that the base is not important.
Logarithms with different bases
differ by a constant factor as
shown in the listed identities.

 base 2.

natural logarithm
(base is e)

B. Summations

1.

2.

3.

4.

5.

6.

7.

8. ,

9.

 COS226 Analysis of Algorithms: Math Cheat Sheet Spring ‘20

ab = c → b = loga c

logb b = 1 logb 1 = 0

logb(
x
y

) = logb x − logb y

logb(x × y) = logb x + logb y

logb xy = y × logb x

logb x =
logc x
logc b

x logb y = ylogb x

blogb x = x

lg(n!) = ∼ n lg n

log n →

lg n →

ln n →

n

∑
i=1

i = 1 + 2 + … + n

n

∑
i=1

c = c + c + … + c = c × n

n

∑
i=1

c × fi = c ×
n

∑
i=1

fi

n

∑
i=1

fi + gi =
n

∑
i=1

fi +
n

∑
i=1

gi

n

∑
i=1

i = 1 + 2 + 3 + … + n =
n(n + 1)

2
n

∑
i=1

i2 = 12 + 22 + 32 + … + n2 =
n(n + 1)(2n + 1)

6
n

∑
i=0

ri = r0 + r1 + r2 + … + rn =
rn+1 − 1

r − 1
, r ≠ 1

n

∑
i=0

2i = 2n+1 − 1
n

∑
i=0

(1
2)i = 1+ 1

2 + 1
4 +…+ 1

2n = ∼ 2

n

∑
i=1

1
i

= 1 +
1
2

+
1
3

+ … +
1
n

∼ ∫
n

1

1
i

di = ln n

Changing bases

Stirling’s Approximation

Definition

Follows directly from the previous rule.

Special cases

Follows directly from the previous rule.

Definition

If c does not depend on i.

Geometric Sum.

Special cases of a geometric sum
(r = 2 and r = 0.5).

Harmonic Number Hn.

Prepared by Ibrahim Albluwi (isma@cs.princeton.edu). Many thanks to Kevin Wayne for providing very valuable feedback.

mailto:isma@cs.princeton.edu
mailto:isma@cs.princeton.edu

