
 
Overview. This worksheet has worked examples for the running time analysis of small pieces of code, by 
counting the number of performed operations. 

To get the full benefit, go through the examples in the same order they are presented and avoid looking at the 
solutions and explanations until you have tried to find the running time on your own. 
You will find at the end of the worksheet a summary of basic summations and logarithms rules, which are 
helpful when analyzing running times for simple pieces of code. 

 
Single Loops
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Ex.1

Ex.2

Ex.3

Ex.4

Ex.5 Solution. .

This is because .

Θ( n)
n × n = n

Solution. .

The loop will multiply  by 3 until 

. Solving for i, we get .

Θ(log n)
i = 10

10 × 3i ≥ n + 5 i = log3
n + 5

10

Solution. .

op() is called exactly   times.

Θ(n)
(n + 5 − 10)/2

Solution. .

. We can drop the coefficient and 

ignore the base.

Θ(log n)
log2 n3 = 3 log2 n

Solution. .

The number of steps needed to get from 1 to n by 
doubling or from n to 1 by halving is .  
The base is not important when using the order of 
growth notation, since logs with different bases are 
a constant factor away from each other.  
(See A.6 in the Math Cheat Sheet at the end).

Θ(log n)

log2 n

Question. For each of the following pieces of code, find the number of times op() is called as a function of the 
input size n. Express your answer in terms of the Big-Theta notation.

for (i = 10; i < n + 5; i += 2) 
 op();

for (i = 1; i < n; i *= 2) 
 op();

for (i = n; i > 1; i /= 2) 
 op();

for (i = 0; i * i < n; i++) 
 op();

for (i = 10; i < n + 5; i *= 3) 
 op();

for (i = 0; i < n * n * n; i *= 2) 
 op();



 

Nested Independent Loops 

 

Nested Dependent Loops 
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Ex.6

Ex.7

Ex.8

Solution. .

op() is called  times, but we ignore the 
coefficient.

Θ(n)
100n

Solution. .

At each iteration of the outer loop, the first inner 
loop runs and then the second inner loop runs. 
Therefore, op() is called  

 times, which is in the order of .

Θ(n2)

n × (n + log n)
= n2 + n log n n2

Solution. .


op() is called exactly   

times.

Θ(n2)
(n − 10) ×

n
2

= 1
2 n2 − 5n

Ex.9

Therefore, op() is called  times. This can be represented as a summation: 

 

1 + 2 + … + n

n

∑
i=0

i =
n(n + 1)

2

Solution. .  
The inner loop performs 1 iteration when  

, and 2 iterations when , etc. 

Θ(n2)

i = 1 i = 2

Explanation. To understand why Eq. 1 is true, note that if we add the numbers twice, we get: 

 

In other words, , which can be re-organized to give Eq. 1 

 
We can also think of this visually as follows:                                How many blue circles for ? 

              rows and  columns 
             area  
             blue circles 

0 + 1 + … + (n − 1) + n
+ n + (n − 1) + … + 1 + 0
= n + n + … + n + n

2 × (0 + 1 + … + n) = n × (n + 1)

n = 4
n n + 1

= n × (n + 1)
= 1

2 × n × (n + 1)

for (i = 10; i < n; i++) 
 for (j = 0; j < n; j += 2) 
  op();

for (i = 0; i < n; i++) 
 for (j = 0; j < 100; j++) 
  op();

for (i = 0; i < n; i++) { 
 for (j = 0; j < n; j++) 
  op(); 

 for (j = 1; j < n; j *= 2); 
  op(); 
}

for (i = 1; i <= n; i++) 
 for (j = 1; j <= i; j ++) 
  op();

Eq. 1

n +1 terms
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Ex.10

Ex.11

Therefore, op() is performed  times. This can be represented as a summation: 

      , which equals to =  (using Eq. 1) 

Simplifying the result and dropping the coefficients and lower order terms leads to . 

1 + 2 + … + (n2 − 10)

n2−10

∑
i=0

i
(n2 − 10) × ((n2 − 10) + 1)

2

n4

Solution. .  
The inner loop performs 1 iteration when 
 , and 2 iterations when , etc.

Θ(n4)

i = 1 i = 2

Solution. .  
When , op() is performed  times, when 
i=2, op() is performed  times, etc. Hence 
the total number of times op() is performed is:

Θ(n3)
i = 1 1 × 1

2 × 2




Explanation.  
To understand why this summation is in the order of , consider the following two observations: 

1. Upper bound:     
 
Therefore, the order of growth is not more than  

2. Lower bound: 
 
 
 
 
Therefore, the order of growth is not less than .  

Since we drop constant coefficients, the upper and lower bounds imply that the order of growth is . 

See B.6 in the math cheat sheet for the exact closed form of this summation.

12 + 22 + 32 + … + n2 =
n

∑
i=1

i2 ∼ 1
3 n3

n3

n3 .

1
8 n3

n3

for (i = 1; i <= n * n - 10; i++) 
 for (j = 1; j <= i; j ++) 
  op(m);

for (i = 1; i <= n; i++) 
 for (j = 1; j <= i; j++) 
  for (k = 1; k <= i; k++) 
   op();

12 + 22 + … + n2 ≥ ( n
2 )2 + (( n

2 + 1)2) + … + n2

≥ ( n
2 )2 + ( n

2 )2 + … + ( n
2 )2

≥ n
2 × ( n

2 )2

12 + 22 + … + n2 ≤ n2 + n2 + … + n2

≤ n × n2

Eq. 2

Considering only the 2nd 
half of the summation.
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Ex.12

Ex.13

However, i takes all the values from . Therefore, the total number of times op() is called is: 

  (using Eq. 1) 

            

Dropping lower order terms, we are left with , which is in the order of  (using Eq. 2). 

1 → n
n

∑
i=1

i

∑
j=1

j =
n

∑
i=1

i(i + 1)
2

=
n

∑
i=1

1
2 i2+ 1

2 i = 1
2

n

∑
i=1

i2+ 1
2

n

∑
i=1

i

1
2

n

∑
i=1

i2 n3

Solution. .

op() is called 1 time when , 2 times when

, etc. Therefore, op() is called  times.

Θ(n3)
j = 1

j = 2
i

∑
j=1

j

Solution. .

The inner loop performs 1 iteration when  

, and 2 iterations when , etc.

Θ(n)

i = 1 i = 2

Therefore, op() is called  times, because  doubles in each iteration of the outer 
loop. This equals to , where  and can be represented as a summation: 

  

Using the identity , we can represent the answer as  
Using the identity , we can represent the answer as ,  
which is in the order of n. 

Explanation.  
This is a geometric sum that can be calculated using the geometric sum formula: 

      

where  and  in this exercise. The following is a visual explanation for this special case: 

                                                                                       

1 + 2 + 4 + … + n i
20 + 21 + … + 2k 2k = n

lg n

∑
k=0

2k = 2lg n+1 − 1 ∼ 2n

am × an = am+n 21 × 2lg n − 1

x lg y = ylg x 21 × nlg 2 − 1 = 21 × n1 − 1

m

∑
i=0

ri =
rm+1 − 1

r − 1

m = lg n r = 2

20

21

3
= 22 − 1

20

21

22

7
= 23 − 1

20

21

22

23

15
= 24 − 1

for (i = 1; i <= n; i++) 
 for (j = 1; j <= i; j++) 
  for (k = 1; k <= j; k++) 
   op();

for (i = 1; i <= n; i *= 2) 
 for (j = 1; j <= i; j++) 
  op();

Eq. 4

Eq. 3
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Ex.14

Ex.15

Ex.16

Therefore, op() is called    , which can be represented as the summation: 

  

This is n multiplied by a Harmonic Number. Harmonic numbers can be approximated by turning the 
summation into an integral: 

 

Hence, the total is .

n
1

+
n
2

+ … +
n
n

n

∑
i=1

n
i

= n ×
n

∑
i=1

1
i

n

∑
i=1

1
i

∼ ∫
n

1

1
i

di = ln n

∼ n ln n

Therefore, op() is called   times. Using the identity , we 
can rewrite the summation as: . 

Using Stirling’s Approximation:  

lg 1 + lg 2 + … + lg n log(a b) = log a + log b
lg 1 + lg 2 + … + lg n = lg(1 × 2 × . . . × n) = lg(n!)

lg(n!) ∼ n lg n

Solution. .

The inner loop performs  iterations when  

, and  iterations when , etc.

Θ(n log n)
n
1

i = 1 n
2 i = 2

Solution. .

There are two independent inner loops: 

• The first inner loop combined with the outer 
loop are identical to the one in Ex.15, which 
runs in the order of .  

• The second inner loop combined with the 
outer loop are identical the one in Ex.9, which 
runs in the order of .  

The total is , which is order .

Θ(n2)

n log n

n2

n log n + n2 n2

Solution. .

The inner loop performs  iterations when  

, and  iterations when , etc.

Θ(n log n)
lg 1

i = 1 lg 2 i = 2

for (i = 1; i <= n; i++) 
 for (j = 1; j < i; j *= 2) 
  op();

Eq. 5

for (i = 1; i <= n; i++) 
 for (j = 1; j <= n; j += i) 
  op();

Eq. 6

for (i = 1; i <= n; i++) { 
 for (j = 1; j <= n; j += i) 
  op(); 

 for (j = 1; j <= i; j++) 
  op(); 
}



 

Recursive Algorithms 
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Ex.17

Ex.18

Ex.19

Ex.20

Ex.21 Solution. . 
Consider the following visualization for the 
recursive calls: 

Θ(n)

Solution. .

op() is executed  times for f(n) and 
times for f(n-1), etc. This means that op() is 
executed  times.  
From Eq. 1, we know this is in the order of .

Θ(n2)
n n − 1

n + (n − 1) + … + 1
n2

Solution. .

op() is executed once in each of the  
recursive calls for .  
These are exactly  calls.

Θ(n)

n , n − 1, …, 2, 1
n

op() is performed once in each recursive call.  
The total number of calls to op() is 

, which is in the order of  
(see Eq.3). 
20 + 21 + 22 + … + 2lg n n

Solution. .

op() is executed  times for f(n) and  times 
for f(n/2), etc. This means that op() is 
executed  times. This can be 

written as , which is in the 

order of   (See B.8 in the cheat sheet at the end).

Θ(n)
n n

2

n +
n
2

+
n
4

+ … + 1

n × (1+ 1
2 + 1

4 +…+ 1
n )

n

Solution. .

op() is executed once in each of the  
recursive calls for .  

These are  calls.

Θ(log n)

n ,
n
2

,
n
4

, …, 2, 1

lg n

void f(int n) { 
 if (n == 0) return; 
 op(); 
 f(n-1); 
}

void f(int n) { 
 if (n == 0) return; 
 for (int i = 0; i < n; i++) 
  op(); 
 f(n-1); 
}

void f(int n) { 
 if (n == 1) return; 
 op(); 
 f(n/2); 
}

void f(int n) { 
 if (n == 0) return; 
 for (int i = 0; i < n; i++) 
  op(); 
 f(n/2); 
}

void f(int n) { 
 if (n == 0) return; 
 op(); 
 f(n/2); 
 f(n/2); 
}

21

22

2lg n

20

…

op() callsf(n)

f( n
2 ) f( n

2 )

f( n
4 ) f( n

4 ) f( n
4 ) f( n

4 )

f( n
n ) f( n

n )

op() calls

op() calls

op() calls
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Ex.22

Ex.23

Ex.24

Solution. .

In each call to f(n), op() is performed a number of 
times that depends on the value of the argument . 
The visualization below shows the value of  in each 
of the recursive calls and the number of times op() is 
performed at each level of the recursion tree. 
The recursion tree has  levels, and op() is 
performed a total of  times at each level. Therefore, 
the order of growth is .

Θ(n lg n)

n
n

lg n + 1
n
n lg n

Solution. .

This is the same as Ex.23, but the height of the tree 
is  instead of . The number of times op() 
is performed at each level is still . Therefore, the 
total is  and the order of growth is .

Θ(n log n)

log4 n log2 n
n

n log4 n n log n

Solution. .

As in Ex.21, f(n) produces a binary tree, but with 

 levels instead of  levels. Since op() is 
performed once in each recursive call, the total 
number of times op() is performed is:  

.  

From Eq.4, we know this is , 
which is in the order of .

Θ(2n)

n + 1 lg n + 1

20 + 21 + 22 + … + 2n

2n+1 − 1 = 21 × 2n − 1
2n

n
2 + n

2 = n

n × n
n = n

n

…

op() callsf(n)

f( n
2 ) f( n

2 )

f( n
4 ) f( n

4 ) f( n
4 ) f( n

4 )

f( n
n ) f( n

n )

op() calls

op() calls

op() calls

4 × n
4 = nlg

n
+

1

void f(int n) { 
 if (n == 0) return; 
 for (int i = 0; i < n; i++) 
  op(); 
 f(n/2); 
 f(n/2); 
}

void f(int n) { 
 if (n == 0) return; 
 for (int i = 0; i < n; i++) 
  op(); 
 for (int i = 0; i < 4; i++) 
  f(n/4); 
}

void f(int n) { 
 if (n == 0) return; 
 op(); 
 f(n-1); 
 f(n-1); 
}



 
A. Logarithms                                                                  Notation: 

1.  

2. ,  

3.  

4.  

5.   

6.  

7.  

8.  

9.  

 (no base)  used with 
orders of growth to indicate 
that the base is not important. 
Logarithms with different bases 
differ by a constant factor as 
shown in the listed identities. 

  base 2.  

natural logarithm  
(base is e) 

B. Summations 

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  ,     

9.
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ab = c → b = loga c

logb b = 1 logb 1 = 0

logb(
x
y

) = logb x − logb y

logb(x × y) = logb x + logb y

logb xy = y × logb x

logb x =
logc x
logc b

x logb y = ylogb x

blogb x = x

lg(n!) = ∼ n lg n

log n →

lg n →

ln n →

n

∑
i=1

i = 1 + 2 + … + n

n

∑
i=1

c = c + c + … + c = c × n

n

∑
i=1

c × fi = c ×
n

∑
i=1

fi

n

∑
i=1

fi + gi =
n

∑
i=1

fi +
n

∑
i=1

gi

n

∑
i=1

i = 1 + 2 + 3 + … + n =
n(n + 1)

2
n

∑
i=1

i2 = 12 + 22 + 32 + … + n2 =
n(n + 1)(2n + 1)

6
n

∑
i=0

ri = r0 + r1 + r2 + … + rn =
rn+1 − 1

r − 1
, r ≠ 1

n

∑
i=0

2i = 2n+1 − 1
n

∑
i=0

( 1
2 )i = 1+ 1

2 + 1
4 +…+ 1

2n = ∼ 2

n

∑
i=1

1
i

= 1 +
1
2

+
1
3

+ … +
1
n

∼ ∫
n

1

1
i

di = ln n

Changing bases

Stirling’s Approximation

Definition

Follows directly from the previous rule.

Special cases

Follows directly from the previous rule.

Definition

If c does not depend on i.

Geometric Sum.

Special cases of a geometric sum 
(r = 2 and r = 0.5).

Harmonic Number Hn.

Prepared by Ibrahim Albluwi (isma@cs.princeton.edu). Many thanks to Kevin Wayne for providing very valuable feedback.
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