
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/16/22 8:04 AM

5.5 DATA COMPRESSION

‣ introduction

‣ run-length encoding

‣ Huffman compression

‣ LZW compression

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

5.5 DATA COMPRESSION

‣ introduction

‣ run-length encoding

‣ Huffman compression

‣ LZW compression
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Data compression

Compression reduces the size of a file:

・To save space when storing it.

・To save time when transmitting it.

・Most files have lots of redundancy.

Who needs compression?

・Moore’s law: # transistors on a chip doubles every 18–24 months.

・Parkinson’s law: data expands to fill space available.

・Text, images, sound, video, sensors, …

Basic concepts ancient (1950s), best technology recently developed.

3

Every day, we create:

・900 million Tweets.

・300 billion emails.

・100 million Instagram photos.

・750,000 hours YouTube video.

Applications

Generic file compression.

・Files: Gzip, bzip2, 7z, PKZIP,

・File systems: ZFS, HFS+, ReFS, GFS, APFS,

Multimedia.

・Images: GIF, JPEG, PNG, RAW,

・Sound: MP3, AAC, Ogg Vorbis,

・Video: MPEG, HDTV, H.264, HEVC,

Communication. Fax, Skype, WeChat, Zoom,

Databases. SQL, Google, Facebook, NSA, ….

Smart sensors. Phone, watch, car, health, ….

4

Lossless compression and expansion

Message. Bitstream B we want to compress.

Compress. Generates a “compressed” representation C (B).

Expand. Reconstructs original bitstream B.

Compression ratio. Bits in C (B) ÷ bits in B.

Ex. 50–75% or better compression ratio for English language.

5

uses fewer bits
(we hope)

Basic model for data compression

Compress Expand
bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...

Basic model for data compression

Compress Expand
bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...

Basic model for data compression

Compress Expand
bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...

Two-bit encoding.

・2 bits per char.

・2 n bits.

Genome. String over the alphabet { A, T, C, G }.

Goal. Encode an n-character genome: A T A G A T G C A T A G . . .

Standard ASCII encoding.

・8 bits per char.

・8 n bits.

Fixed-length code. k-bit code supports alphabet of size 2k.

Amazing but true. Some genomic databases in 1990s used ASCII.

Data representation: genomic code

6

char hex binary

'A' 41 01000001

'T' 54 01010100

'C' 43 01000011

'G' 47 01000111

char binary

'A' 00

'T' 01

'C' 10

'G' 11

compression ratio = 25%
(compared to ASCII)

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal-to-ASCII conversion tablehexadecimal-to-ASCII conversion table

Writing binary data

Binary standard output. Write bits to standard output.

7

664 CHAPTER 6 Q Strings

Binary input and output. Most systems nowadays, including Java, base their I/O on
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow
clients to read and write individual bits, intermixed with data of various types (primi-
tive types and String). The goal is to minimize the necessity for type conversion in
client programs and also to take care of operating-system conventions for representing
data.We use the following API for reading a bitstream from standard input:

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

API for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a single
byte, a client could read it 1 bit at a time with 8 calls to readBoolean(). The close()
method is not essential, but, for clean termination, clients should call close() to in-
dicate that no more bits are to be read. As with StdIn/StdOut, we use the following
complementary API for writing bitstreams to standard output:

public class BinaryStdOut

void write(boolean b) write the speci!ed bit
void write(char c) write the speci!ed 8-bit char

void write(char c, int r) write the r least signi!cant bits of the speci!ed char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

API for static methods that write to a bitstream on standard output

BinaryStdOut.write('A');
BinaryStdOut.write(false);
BinaryStdOut.write(true);
BinaryStdOut.write(15);
BinaryStdOut.write(15, 4);
BinaryStdOut.close();

01000001 01000000 00000000 00000000 00000011 11111100

write 4 least significant bits of integer

15FT'A' 15

write 32-bit integer

write as 8-bit character

byte alignment upon close
(number of bits is a multiple of 8)

write bits

01 111111

Reading binary data

Binary standard input. Read bits from standard input.

8

char c = BinaryStdIn.readChar();
boolean b1 = BinaryStdIn.readBoolean();
boolean b2 = BinaryStdIn.readBoolean();
int x = BinaryStdIn.readInt();
int y = BinaryStdIn.readInt(4);

01000001 01000000 00000000 00000000 00000011 11111100

read 4-bit integer

15FT'A' 15

read 32-bit integer

read 8-bit character

read bits

664 CHAPTER 6 Q Strings

Binary input and output. Most systems nowadays, including Java, base their I/O on
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow
clients to read and write individual bits, intermixed with data of various types (primi-
tive types and String). The goal is to minimize the necessity for type conversion in
client programs and also to take care of operating-system conventions for representing
data.We use the following API for reading a bitstream from standard input:

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

API for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a single
byte, a client could read it 1 bit at a time with 8 calls to readBoolean(). The close()
method is not essential, but, for clean termination, clients should call close() to in-
dicate that no more bits are to be read. As with StdIn/StdOut, we use the following
complementary API for writing bitstreams to standard output:

public class BinaryStdOut

void write(boolean b) write the speci!ed bit
void write(char c) write the speci!ed 8-bit char

void write(char c, int r) write the r least signi!cant bits of the speci!ed char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

API for static methods that write to a bitstream on standard output

Binary representation

Q. How to examine the contents of a bitstream (e.g., when debugging)?

9

lots of unprintable characters
(don’t System.out.print() binary data)

~> more dna.txt
ATCGCA

standard character stream

~> java HexDump < dna.txt
41 54 43 47 43 41
48 bits

bitstream represented with hex digits

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal-to-ASCII conversion tablehexadecimal-to-ASCII conversion table

~> java HexDump < us.gif
47 49 46 38 39 61 8e 01 01 01 d5 00 00 94 18 29
06 02 03 84 29 4a 6b 18 4a 73 29 6b 6e 5d 6e 4a
45 4a f7 ef f7 42 00 52 1f 00 37 42 10 6b 31 00
63 31 08 5a 7e 70 8d 36 08 6b 4a 21 7b 5b 36 86
...
b7 de 7b f3 dd b7 df 7f 03 1e 38 cc 41 00 00 3b
99200 bits

bitstream of binary file represented with hex digits

Universal data compression

Proposition. No algorithm can compress every bitstring.

Pf 1. [by contradiction]

・Suppose you have a universal data compression algorithm U

that can compress every bitstream.

・Given bitstring B0, compress it to get a shorter bitstring B1.

・Compress B1 to get a shorter bitstring B2.

・Continue until reaching bitstring of length 0.

・Implication: all bitstrings can be compressed to 0 bits!

Pf 2. [by counting]

・Suppose your algorithm that can compress all 1,000-bit strings.

・21000 possible bitstrings with 1,000 bits.

・Only 1 + 2 + 4 + … + 2998 + 2999 = 21000 − 1 can be encoded with ≤ 999 bits.

・Similarly, only 1 in 2499 bitstrings can be encoded with ≤ 500 bits!

10
Universal

data compression?

.

.

.

U

U

U

U

U

U

!

Universal
data compression?

.

.

.

U

U

U

U

U

U

!

Universal
data compression?

.

.

.

U

U

U

U

U

U

!

Universal
data compression?

.

.

.

U

U

U

U

U

U

!

Universal data compression

Pied Piper. Claims lossless compression ratio of 1 : 3.8 for arbitrary files.

11

Data compression: quiz 1

Did Pied Piper achieve a lossless compression ratio of 1 : 3.8 for arbitrary files?  

A. Yes.

B. No.

12

violates impossibility theorem
(but it’s HBO)

Rdenudcany in Enlgsih lnagugae

Q. How much redundancy in the English language?

A. Quite a bit.

Bottom line. The gaol of data cmperisoson is to inetdify rdenudcany and epxloit it.

13

“ ... randomising letters in the middle of words [has] little or no effect on the

 ability of skilled readers to understand the text. This is easy to denmtrasote.

 In a pubiltacion of New Scnieitst you could ramdinose all the letetrs,

 keipeng the first two and last two the same, and reibadailty would hadrly be

 aftcfeed. ” — Graham Rawlinson

5.5 DATA COMPRESSION

‣ introduction

‣ run-length encoding

‣ Huffman compression

‣ LZW compression
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Run-length encoding (RLE)

Simple type of redundancy in a bitstream. Long runs of repeated bits.

Representation. Use 4-bit counts to represent alternating runs of 0s and 1s:

15 0s, then 7 1s, then 7 0s, then 11 1s.

Q. How many bits r to use to store each run length?

A. Typically 8 bits (but 4 on this slide for brevity).

Q. What to do when run length exceeds max count 2r − 1 ?

A. Intersperse runs of length 0.

Applications. JPEG, TIFF, BMP, ITU-T T4 Group 3 Fax, ...

15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1
15 7 7 11

now only 16 bits

40 bits

run of length 7run of length 15 run of length 7 run of length 11

Data compression: quiz 2

What is the best compression ratio achievable from run-length encoding 
when using 8-bit counts?

A. 1 / 256

B. 1 / 16

C. 8 / 255

D. 1 / 8

E. 16 / 255

16

0 0 0 0 . . . 0 1 1 1 1 . . . 1 0 0 0 0 . . . 0 1 1 1 1 . . . 1 . . .

1 . . .
255

255n bits (input)

8n bits (compressed)

255255

run of length 255 run of length 255 run of length 255 run of length 255

255

25

public class RunLength
{

 public static void compress()
 { /* see textbook */ }

 public static void expand()
 {
 boolean bit = false;
 while (!BinaryStdIn.isEmpty())
 {
 int run = BinaryStdIn.readInt(8);
 for (int i = 0; i < run; i++)
 BinaryStdOut.write(bit);
 bit = !bit;
 }
 BinaryStdOut.close();
 }

}

Run-length encoding: Java implementation

17

write run of 0s or 1s to standard output

read 8-bit count from standard input

pad last byte with 0s (if needed)
and close output stream

flip bit (for next run)

initial run is of 0s

5.5 DATA COMPRESSION

‣ introduction

‣ run-length encoding

‣ Huffman compression

‣ LZW compression
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Variable-length codes

Key idea. Use different number of bits to encode different characters.

Ex. Morse code: ● ● ● ━ ━ ━ ● ● ●

Issue. Ambiguity.

S O S ?

V Z E ?

E E J I E ?

E E W N I ?

In practice. Use a short gap to separate characters.

19

codeword for S
is a prefix of

codeword for V

A N

B O

C P

D Q

E R

F S

G T

H U

I V

J W

K X

L Y

M Z

Variable-length codes

Q. How do we avoid ambiguity?

A. Ensure that no codeword is a prefix of another.

Ex 1. Fixed-length code.

Ex 2. Append special “stop” character to each codeword.

Ex 3. General prefix-free code.

20

char codeword

! 101

A 11

B 00

C 010

D 100

R 011

no codeword
is a prefix of another

1 1 0 0 0 1 1 1 1

A B AR

Prefix-free codes: compression

Q. How to represent the prefix-free code for compression?

A. A symbol table or array.

21

char codeword

! 101

A 11

B 00

C 010

D 100

R 011

key/index value

Prefix-free codes: trie representation

Q. How to represent the prefix-free code for expansion?

A. A binary trie.

・Characters in leaves.

・Codeword is path from root to leaf.

22

char codeword

! 101

A 11

B 00

C 010

D 100

R 011

1

1

1

1

1

0

0 0

0 0

leaf nodes

A

C R D !

B

Expansion.

・Start at root.

・Go left if bit is 0; go right if 1.

・If leaf node, write character and restart at root node.

A

C R D

1

!

B

1

1

1

1

0

0 0

0 0

Prefix-free codes: expansion

23

1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1

A B A A A B AR C D R !

Data compression: quiz 3

Consider the following trie representation of a prefix-free code.  
Expand the compressed bitstring 1 0 0 1 0 1 0 0 0 1 1 1 0 1 1 ?

A. PEED

B. PESDEY

C. SPED

D. SPEEDY

24

E

D

P Y

S

0 1

0 1

0 1

0 1

S P E E D Y

Prefix-free codes: expansion

Running time. Linear in input size (number of bits).

public void expand()
{
 Node root = readTrie();
 int n = BinaryStdIn.readInt();

 for (int i = 0; i < n; i++)
 {

 Node x = root;
 while (!x.isLeaf())
 {
 if (!BinaryStdIn.readBoolean())
 x = x.left;
 else
 x = x.right;
 }
 BinaryStdOut.write(x.ch, 8);

 }
 BinaryStdOut.close();
}

25

follow path from root to leaf
to determine character

read encoding trie

read number of encoded characters (32 bits)

for each encoded character i

write character (8 bits)

read 0 or 1 (1 bit)

don't forget this!

Huffman compression overview

Static model. Use the same prefix-free code for all messages.

Dynamic model. Use a custom prefix-free code for each message.

Compression.

・Read message.

・Build best prefix-free code for message using Huffman’s algorithm. [next]

・Write prefix-free code.

・Compress message using prefix-free code.

Expansion.

・Read prefix-free code.

・Read compressed message and expand using prefix-free code.

26

Huffman’s algorithm demo

27

A

R B

! C

D

0

1 1 1

1 0 1 1

1 0 0

1 1 0

1 0 1 0

A 5

B 2

C 1

D 1

R 2

! 1

char freq encoding

0 1

0 1 10

0 1

0 1

Huffman’s algorithm

Huffman’s algorithm:

・Count frequency freq[c] of each character c in input.

・Start with one node corresponding to each character c (with weight freq[c]).

・Repeat until single trie formed:

– select two tries with min weight freq[i] and freq[j]

– merge into single trie with weight freq[i] + freq[j]

Proposition. Huffman’s algorithm computes an optimal prefix-free code for a given message.

Pf. See textbook.

Applications:

28

no prefix-free code
uses fewer bits

private static Node buildTrie(int[] freq)
{

}

Constructing a Huffman trie: Java implementation

29

MinPQ<Node> pq = new MinPQ<Node>();
 for (char c = 0; c < R; c++)
 if (freq[c] > 0)
 pq.insert(new Node(c, freq[c], null, null));

while (pq.size() > 1)
{
 Node x = pq.delMin();
 Node y = pq.delMin();
 Node parent = new Node('\0', x.freq + y.freq, x, y);
 pq.insert(parent);
}

initialize PQ with
singleton tries

merge two
smallest tries

not used for
internal nodes

total
frequency

two subtriesreturn pq.delMin();

ENCODING THE BINARY TRIE

Q. How to transmit the binary trie?

A. Write preorder traversal; mark leaf nodes and internal nodes with a bit.

30

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

0 for internal nodes
1 for leaf nodes

5.5 DATA COMPRESSION

‣ introduction

‣ run-length encoding

‣ Huffman compression

‣ LZW compression
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Statistical methods

Static model. Same model for all messages.

・Fast but not optimal: different messages have different statistical properties.

・Ex: ASCII, Morse code.

Dynamic model. Generate model based on message.

・Preliminary pass needed to generate model; must transmit the model.

・Ex: Huffman code.

Adaptive model. Progressively learn and update model as you read message.

・More refined modeling can produces better compression.

・Ex: LZW.

32

A B R A C A D A B R A B R A B R AB

key value

AB 81

BR 82

RA 83

AC 84

CA 85

AD 86

LZW compression demo (for 7-bit chars and 8-bit codewords)

Ainput

matches

value 41 42 52 41 43 41 44 81 83 82 88 41

A B R A C A D A B R A B R A B R A

key value

DA 87

ABR 88

RAB 89

BRA 8A

ABRA 8B

B R A C A D A B R A B R A R A

LZW compression for A B R A C A D A B R A B R A B R A

key value

⋮ ⋮

A 41

B 42

C 43

D 44

⋮ ⋮

codeword table

80

33

Input.

・7-bit ASCII chars.

・ASCII 'A' is 4116.

Codeword table.

・8-bit codewords: 0016 to FF16.

・Codewords for single chars are ASCII values.

・Codewords 8116 to FF16 for multiple chars.

・Stop symbol = 8016.

41 42 52 41 43 41 44 81 83 82 88 41 80

key value

81 AB

82 BR

83 RA

84 AC

85 CA

86 AD

LZW expansion demo (for 7-bit chars and 8-bit codewords)

key value

⋮ ⋮

41 A

42 B

43 C

44 D

⋮ ⋮

value

output A B R A C A D A B R A B R A B R A

key value

87 DA

88 ABR

89 RAB

8A BRA

8B ABRA

codeword table

LZW expansion for 41 42 52 41 43 41 44 81 83 82 88 41 80

34

Input.

・7-bit ASCII chars.

・ASCII 'A' is 4116.

Codeword table.

・8-bit codewords: 0016 to FF16.

・Codewords for single chars are ASCII values.

・Codewords 8116 to FF16 for multiple chars.

・Stop symbol = 8016.

Data compression: quiz 4

Which is the LZW compression for ABABABA ?

A. 41 42 41 42 41 42 80

B. 41 42 41 81 81 80

C. 41 42 81 81 41 80

D. 41 42 81 83 80

35

A B A B A B A

key value

AB 81

BA 82

ABA 83

key value

⋮ ⋮

A 41

B 42

C 43

D 44

⋮ ⋮

Ainput

matches

value 41 42 81 83 80

A B A B A B A

B A B A B A

Data compression: quiz 5

Which is the key data structure to implement LZW compression efficiently?

A. Array

B. Red–black BST

C. Hash table

D. Trie

36

key operation: find longest string in ST
that is a prefix of unscanned part of input

Implementing LZW compression: longest prefix match

Find longest key in symbol table that is a prefix of query string.

37

… A B R A C A B R O C C O L I …input

value 88

A

B C D AR A A

R BA

A

RB C D

88

81

8B

8A 89

84 86 85 87 8382

41 42 5243 44

41 8843

LZW in the real world

Lempel–Ziv and friends.

・LZ77.

・LZ78.

・LZW.

・Deflate / zlib = LZ77 variant + Huffman.

Unix compress, GIF, TIFF, V.42bis modem: LZW.

zip, 7zip, gzip, jar, png, pdf: deflate / zlib.

iPhone, Wii, Apache HTTP server: deflate / zlib.

38

not patented
(widely used in open source)

previously under patent

Lossless data compression benchmarks

39

year scheme bits / char

1967 ASCII 7

1950 Huffman 4.7

1977 LZ77 3.94

1984 LZMW 3.32

1987 LZH 3.3

1987 move-to-front 3.24

1987 LZB 3.18

1987 gzip 2.71

1988 PPMC 2.48

1994 SAKDC 2.47

1994 PPM 2.34

1995 Burrows-Wheeler 2.29

1997 BOA 1.99

1999 RK 1.89

data compression using Calgary corpus

next programming assignment

Data compression summary

Lossless compression.

・Represent fixed-length symbols with variable-length codes. [Huffman]

・Represent variable-length symbols with fixed-length codes. [LZW]

Lossy compression. [not covered in this course]

・JPEG, MPEG, MP3, …

・FFT/DCT, wavelets, fractals, …

Theoretical limits on compression. Shannon entropy:

Practical compression. Exploit extra knowledge whenever possible.

40

Xk =
n�1�

i=0

xi cos

�
�

n

�
i +

1

2

�
k

�

<latexit sha1_base64="q4iNYXmNgV3FwLAaZUmXklZ6mdg=">AAACV3icbZDfShtBFMZnV6sxVk3SS2+GBiGFGnZFURAh0BsvIzQxkI3L7OQkDs7OLDNnS8KSp+jT9LZ9Cp+mTpK9aGIPDHz8zr85X5JJYTEIXj1/Z/fD3n7loHr48ej4pFZv9K3ODYce11KbQcIsSKGghwIlDDIDLE0kPCYv35b5xx9grNDqO84zGKVsqsREcIYOxbXz+9bgC41u76Jbek4jm6exeFI0a81i4fhXGkk9jS9KENeaQTtYBX0vwlI0SRnduO41orHmeQoKuWTWDsMgw1HBDAouYVGNcgsZ4y9sCkMnFUvBjorVXQt65siYTrRxTyFd0X87CpZaO08TV5kyfLbbuSX8X26Y4+RmVAiV5QiKrxdNcklR06VJdCwMcJRzJxg3wv2V8mdmGEdn5caW1ewM+MYlxSxXgusxbFGJMzRs4VwMtz17L/oX7fCqHTxcNjs3pZ8Vcko+kxYJyTXpkHvSJT3CyU/yi/wmf7xX76+/51fWpb5X9nwiG+HX3wDgHLN+</latexit>

H(X) = �
nX

i

p(xi) log2 p(xi)

© Copyright 2022 Robert Sedgewick and Kevin Wayne

41

