
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/13/22 2:43 PM

5.1 STRING SORTS

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays
https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

5.1 STRING SORTS

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

String processing

String. Sequence of characters.

Important fundamental abstraction.

・Programming systems (e.g., Java code).

・Communication systems (e.g., email).

・Information processing.

・Genomic sequences.

・…

3

“The digital information that underlies biochemistry, cell

 biology, and development can be represented by a simple

 string of G’s, A’s, T’s and C’s. This string is the root data

 structure of an organism’s biology. ” — M. V. Olson

 AMERICAN~~~~~~~~~~~~~~~~~~~~~~~~~~,~ ~

 SCI ENCE A; ''~

This content downloaded from 128.112.200.107 on Sun, 17 Nov 2019 17:31:35 UTC
All use subject to https://about.jstor.org/terms

The char data type

C char data type. Typically an 8-bit integer (between 0 and 255).

・Supports 7-bit ASCII.

・Represents only 28 = 256 characters.

Java char data type. A 16-bit unsigned integer (between 0 and 65,535).

・Supports 16-bit Unicode 1.0.1.

・Supports 21-bit Unicode 10.0.0 (awkwardly via UTF-8).

4

U+2202U+00E1U+0041

some Unicode characters

U+1F4A9

💩

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal-to-ASCII conversion tableall 27 = 128 ASCII characters

can use as an index into an array

I 💖 Unicode

5

U+1F496

💖

The String data type (in Java 11)

String data type. Immutable sequence of characters.

Java 11 representation. A fixed-length char[] array.

6

operation description Java running time

length number of characters s.length() 1

indexing character at index i s.charAt(i) 1

concatenation
concatenate one string to

the end of the other
s + t len(s) + len(t)

comparison
compare two strings

lexicographically
s.compareTo(t) lcp(s, t)

⋮ ⋮

Fundamental constant-time String operations

0 1 2 3 4 5 6 7 8 9 10 11 12

A T T A C K A T D A W N s

s.charAt(3)

s.length()

Fundamental constant-time String operations

0 1 2 3 4 5 6 7 8 9 10 11 12

A T T A C K A T D A W N s

s.charAt(3)

s.length()

Fundamental constant-time String operations

0 1 2 3 4 5 6 7 8 9 10 11 12

A T T A C K A T D A W N s

s.charAt(3)

s.length()

length of
longest common prefix

allocates new char[]

String performance trap

Q. How to build a long string, one character at a time?

StringBuilder data type. Mutable sequence of characters.

Java representation. A resizing char[] array.

7

 public static String reverse(String s)
 {
 String reverse = "";
 for (int i = s.length() - 1; i >= 0; i--)
 reverse += s.charAt(i);
 return reverse;
 }

quadratic time
(1 + 2 + 3 + … + n)

 public static String reverse(String s)
 {
 StringBuilder reverse = new StringBuilder();
 for (int i = s.length() - 1; i >= 0; i--)
 reverse.append(s.charAt(i));
 return reverse.toString();
 }

linear time
n + (1 + 2 + 4 + 8 + 16 + … + n)

alternatively,
new StringBuilder(s).reverse().toString()

THE STRING DATA TYPE: IMMUTABILITY

Q. Why are Java strings immutable?

A. Many compelling reasons!

・Streamlines tracing/debugging.

・Simplifies programming.

・Maintains data structure invariants.

・Strengthens security.

・Improves performance.

・…

Immutable strings. Java, C#, Python, JavaScript, Scala, Go, ...

Mutable strings. C, C++, Matlab, Ruby, PHP, …

8

state doesn't change

reading files, JVM class loader, ...

string pools, cache hash code, ...

defensive copy, thread safety, ...

binary heap, BST, hash table, ...

Alphabets

Digital key. Sequence of digits over a given alphabet.

Radix. Number of digits R in alphabet.

Note. We use extended ASCII alphabet in this lecture (but analyze in terms of R).

9

604 CHAPTER 6 ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java
String, we have to use an array of size 256; with Alphabet, we just need an array with
one entry for each alphabet character. This savings might seem modest, but, as you will
see, our algorithms can produce huge numbers of such arrays, and the space for arrays
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over
a given Alphabet into a base-R number represented as an int[] array with all values
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For
example, if we know that the input consists only of characters from the alphabet, we
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s);
for (int i = 0; i < N; i++)
 count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets

604 CHAPTER 6 ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java
String, we have to use an array of size 256; with Alphabet, we just need an array with
one entry for each alphabet character. This savings might seem modest, but, as you will
see, our algorithms can produce huge numbers of such arrays, and the space for arrays
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over
a given Alphabet into a base-R number represented as an int[] array with all values
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For
example, if we know that the input consists only of characters from the alphabet, we
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s);
for (int i = 0; i < N; i++)
 count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets

604 CHAPTER 6 ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java
String, we have to use an array of size 256; with Alphabet, we just need an array with
one entry for each alphabet character. This savings might seem modest, but, as you will
see, our algorithms can produce huge numbers of such arrays, and the space for arrays
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over
a given Alphabet into a base-R number represented as an int[] array with all values
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For
example, if we know that the input consists only of characters from the alphabet, we
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s);
for (int i = 0; i < N; i++)
 count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets

techniques also extend to
64-bit integers and other digital keys

5.1 STRING SORTS

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Review: summary of the performance of sorting algorithms

Frequency of calls to compareTo().

Sorting lower bound. In the worst case, any compare-based sorting algorithm

makes Ω(n log n) compares.

Q. Can we sort strings faster (despite lower bound)?

A. Yes, by exploiting access to individual characters.

11

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ n2 ¼ n2 Θ(1) ✔ compareTo()

mergesort n log2 n n log2 n Θ(n) ✔ compareTo()

quicksort 1.39 n log2 n * 1.39 n log2 n * Θ(log n) * compareTo()

heapsort 2 n log2 n 2 n log2 n Θ(1) compareTo()

* probabilistic

use characters to make
R-way decisions

(instead of binary decisions)

compareTo() not constant time for string keys

Key-indexed counting: assumptions about keys

Assumption. Each key is an integer between 0 and R - 1.

Implication. Can use key as an array index.

Applications.

・Sort class roster by section number.

・Sort phone numbers by area code.

・Sort playing cards by suit.

・Sort string by first letter.

・Use as a subroutine in string sorting algorithm.

Remark. Keys typically have associated data ⇒

can’t simply count keys of each value.

12

Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
Miller 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4 Williams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
Wilson 4 Wilson 4

Typical candidate for key-indexed counting

input sorted result

keys are
small integers

section (by section) name

Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
Miller 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4 Williams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
Wilson 4 Wilson 4

Typical candidate for key-indexed counting

input sorted result

keys are
small integers

section (by section) name

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

・Compute character frequencies.

・Compute cumulative frequencies.

・Distribute items to auxiliary array using cumulative frequencies.

・Copy back into original array.

13

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0
1
2
3
4
5

a
b
c
d
e
f

use for
for
for
for
for
for

 int n = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < n; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < n; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < n; i++)
 a[i] = aux[i];

R = 6

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

・Compute character frequencies.

・Compute cumulative frequencies.

・Distribute items to auxiliary array using cumulative frequencies.

・Copy back into original array.

a 0

b 2

c 3

d 1

e 2

f 1

- 3

14

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

offset by 1
[stay tuned]

r count[r]

 int n = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < n; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < n; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < n; i++)
 a[i] = aux[i];

count
frequencies

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

・Compute character frequencies.

・Compute cumulative frequencies.

・Distribute items to auxiliary array using cumulative frequencies.

・Copy back into original array.

a 0

b 2

c 5

d 6

e 8

f 9

- 12

15

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

r count[r]

 int n = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < n; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < n; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < n; i++)
 a[i] = aux[i];

compute
cumulates

 6 keys < d, 8 keys < e
so d’s go in a[6] and a[7]

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

・Compute character frequencies.

・Compute cumulative frequencies.

・Distribute items to auxiliary array using cumulative frequencies.

・Copy back into original array.

a 2

b 5

c 6

d 8

e 9

f 12

- 12

16

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i aux[i]

 int n = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < n; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < n; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < n; i++)
 a[i] = aux[i];

move
items

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

・Compute character frequencies.

・Compute cumulative frequencies.

・Distribute items to auxiliary array using cumulative frequencies.

・Copy back into original array.

a 2

b 5

c 6

d 8

e 9

f 12

- 12

17

i a[i]

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i aux[i]

 int n = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < n; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < n; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < n; i++)
 a[i] = aux[i];copy

back

Radix sorting: quiz 1

Which of the following are properties of key-indexed counting?

A. Θ(n + R) time.

B. Θ(n + R) extra space.

C. Stable.

D. All of the above.

Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
Miller 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4 Williams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
Wilson 4 Wilson 4

Distributing the data (records with key 3 highlighted)

 count[]
1 2 3 4
0 3 8 14
0 4 8 14
0 4 9 14
0 4 10 14
0 4 10 15
1 4 10 15
1 4 11 15
1 4 11 16
1 4 12 16
2 4 12 16
2 5 12 16
2 6 12 16
3 6 12 16
3 7 12 16
3 7 12 17
3 7 13 17
3 7 13 18
3 7 13 19
3 8 13 19
3 8 14 19
3 8 14 20

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

aux[0]

aux[1]

aux[2]

aux[3]

aux[4]

aux[5]

aux[6]

aux[7]

aux[8]

aux[9]

aux[10]

aux[11]

aux[12]

aux[13]

aux[14]

aux[15]

aux[16]

aux[17]

aux[18]

aux[19]

for (int i = 0; i < N; i++)
 aux[count[a[i].key(d)]++] = a[i];

18
stability

5.1 STRING SORTS

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Least-significant-digit-first (LSD) radix sort

・Consider characters from right to left.

・Stably sort using character d as the key (using key-indexed counting).

20

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

sort key (d = 1)

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key (d = 0)

0 d a b

1 c a b

2 e b b

3 a d d

4 f a d

5 b a d

6 d a d

7 f e d

8 b e d

9 f e e

10 b e e

11 a c e

sort is stable
(arrows do not cross)

sort key (d = 2)

strings sorted!

LSD string sort: correctness proof

Proposition. LSD sorts any array of n strings, each of length w, in Θ(w(n + R)) time.

Pf of correctness. [by induction on # passes]

・Inductive hypothesis: after pass i, strings are

sorted by last i characters.

・After pass i + 1, string are sorted by last

i + 1 last characters because...

– if two strings differ on sort key, key-indexed

counting puts them in proper relative order

– if two strings agree on sort key, stability of

key-indexed counting keeps them in proper

relative order

Proposition. LSD sort is stable.

Pf. Key-indexed counting is stable.

21

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

sorted from
previous passes
(by induction)

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key

after pass i+1after pass i

LSD string sort (for fixed-length strings): Java implementation

22

public class LSD
{
 public static void sort(String[] a, int w)
 {
 int R = 256;
 int n = a.length;
 String[] aux = new String[n];

 for (int d = w-1; d >= 0; d--)
 {

 }
 }
}

int[] count = new int[R+1];
for (int i = 0; i < n; i++)
 count[a[i].charAt(d) + 1]++;
for (int r = 0; r < R; r++)
 count[r+1] += count[r];
for (int i = 0; i < n; i++)
 aux[count[a[i].charAt(d)]++] = a[i];
for (int i = 0; i < n; i++)
 a[i] = aux[i];

do key-indexed counting
for each digit from right to left

radix R
fixed-length w strings

key-indexed counting
(using character d)

Summary of the performance of sorting algorithms

Frequency of calls to compareTo() and charAt().

23

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ n2 ¼ n2 Θ(1) ✔ compareTo()

mergesort n log2 n n log2 n Θ(n) ✔ compareTo()

quicksort 1.39 n log2 n * 1.39 n log2 n * Θ(log n) * compareTo()

heapsort 2 n log2 n 2 n log2 n Θ(1) compareTo()

LSD sort † 2 w n 2 w n Θ(n + R) ✔ charAt()

* probabilistic
† fixed-length w keys

one call to compareTo()
can involve as many as

2w calls to charAt()

but Θ(w(n+R))
array accesses

24
Google CEO Eric Schmidt interviews Barack Obama in November 2007

Which algorithm below is fastest for sorting 1 million 32-bit integers?

A. Insertion sort.

B. Mergesort.

C. Quicksort.

D. LSD sort.

Radix sorting: quiz 2

25

01110110111011011101...1011101

Divide each word into four 8-bit “characters.”

R = 28 ⇒ 256 counters.

LSD radix sort with w = 4 passes.

optimized version is 10× faster than Arrays.sort()

5.1 STRING SORTS

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Reverse LSD

・Consider characters from left to right.

・Stably sort using character d as the key (using key-indexed counting).

27

0 b a d

1 c a b

2 d a b

3 d a d

4 f a d

5 e b b

6 a c e

7 a d d

8 b e e

9 b e d

10 f e e

11 f e d

sort key (d = 1)

0 c a b

1 d a b

2 e b b

3 b a d

4 d a d

5 f a d

6 a d d

7 b e d

8 f e d

9 a c e

10 b e e

11 f e e

sort key (d = 2)

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key (d = 0)

strings not sorted!

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

Most-significant-digit-first (MSD) radix sort

Overview.

・Partition array into R subarrays according to first character.

・Recursively sort all strings that start with each character.

(excluding the first characters in subsequent sorts)

28

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key (d = 0)

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort subarrays recursively
(excluding first characters)

count[]

a 0

b 2

c 5

d 6

e 8

f 9

- 12

use key-indexed counting

key-indexed counts delineate subarray boundaries

public static void sort(String[] a, int w)
{
 aux = new String[a.length];
 sort(a, aux, w, 0, a.length - 1, 0);
}

private static void sort(String[] a, String[] aux, int w, int lo, int hi, int d)
{
 if (hi <= lo || d == w) return;

}

MSD string sort (for fixed-length strings): Java implementation

29

int[] count = new int[R+1];
for (int i = lo; i <= hi; i++)
 count[a[i].charAt(d) + 1]++;
for (int r = 0; r < R; r++)
 count[r+1] += count[r];
for (int i = lo; i <= hi; i++)
 aux[count[a[i].charAt(d)]++] = a[i];
for (int i = lo; i <= hi; i++)
 a[i] = aux[i - lo];

sort(a, aux, w, lo, lo + count[0] - 1, d+1);
for (int r = 1; r < R; r++)
 sort(a, aux, w, lo + count[r-1], lo + count[r] - 1, d+1);

sort R subarrays recursively

recycles aux[] array
but not count[] array

fixed-length w strings

sort a[lo..hi] assuming first d
characters already match

at this place in code, count[r] = number of keys ≤ r

key-indexed counting
(using character d)

subarrays of length 0 or 1; or all w characters match

Variable-length strings

Useful trick. Treat strings as if they had an extra char at end (smaller than any char).

C strings. Terminated with null character ('\0') ⇒ no extra work needed.

30

0 s e a -1

1 s e a s h e l l s -1

2 s e l l s -1

3 s h e -1

4 s h e -1

5 s h e l l s -1

6 s h o r e -1

private static int charAt(String s, int d)
{
 if (d < s.length()) return s.charAt(d);
 else return -1;
}

why smaller?

"she" before "shells"

For which family of inputs is MSD sort likely to be faster than LSD sort?

A. Random strings.

B. All equal strings.

C. Both A and B.

D. Neither A nor B.

Radix sorting: quiz 3

31

1 E I 0 4 0 2
1 H Y L 4 9 0
1 R O Z 5 7 2
2 H X E 7 3 4
2 I Y E 2 3 0
2 X O R 8 4 6
3 C D B 5 7 3
3 C V P 7 2 0
3 I G J 3 1 9
3 K N A 3 8 2
3 T A V 8 7 9
4 C Q P 7 8 1
4 Q G I 2 3 4
4 Y H V 2 2 9

random

1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7

all equal

 MSD string sort: performance

Observation. MSD examines just enough character to sort the keys.

Proposition. For random strings, MSD examines Θ(n logR n) characters.

Remark. This can be sublinear in the input size Θ(n w).

Proposition. In the worst case, MSD requires Θ(n + wR) extra space.

32

compareTo() based sorts can also be sublinear

1 E I 0 4 0 2
1 H Y L 4 9 0
1 R O Z 5 7 2
2 H X E 7 3 4
2 I Y E 2 3 0
2 X O R 8 4 6
3 C D B 5 7 3
3 C V P 7 2 0
3 I G J 3 1 9
3 K N A 3 8 2
3 T A V 8 7 9
4 C Q P 7 8 1
4 Q G I 2 3 4
4 Y H V 2 2 9

random

1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7
1 D N B 3 7 7

all equal

Summary of the performance of sorting algorithms

Frequency of calls to compareTo() and charAt().

33

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ n2 ¼ n2 Θ(1) ✔ compareTo()

mergesort n log2 n n log2 n Θ(n) ✔ compareTo()

quicksort 1.39 n log2 n * 1.39 n log2 n * Θ(log n) * compareTo()

heapsort 2 n log2 n 2 n log2 n Θ(1) compareTo()

LSD sort † 2 w n 2 w n Θ(n + R) ✔ charAt()

MSD sort ‡ 2 w n n logR n Θ(n + w R) ✔ charAt()

* probabilistic
† fixed-length w keys
‡ average-length w keys

but can make Θ(w n R)
array accesses

(n / 2 pairs of duplicate keys)

Engineering a radix sort (American flag sort)

Optimization 0. Cutoff to insertion sort.

・MSD is much too slow for small subarrays.

・Essential for performance.

Optimization 1. Replace recursion with explicit stack.

・Push subarrays to be sorted onto stack.

・One count[] array now suffices.

Optimization 2. Do R-way partitioning in place.

・Eliminates aux[] array.

・Sacrifices stability.

34

Engineering Radix Sort
Peter M. Mcllroy and Keith Bostic

University of California at Berkeley;

and M. Douglas Mcllroy
AT&T Bell Laboratories

ABSTRACT Radix sorting methods have excellent
asymptotic performance on string data, for which com-
parison is not a unit-time operation. Attractive for use
in large byte-addressable memories, these methods
have nevertheless long been eclipsed by more easily
prograÍrmed algorithms. Three ways to sort strings by
bytes left to right-a stable list sort, a stable two-array
sort, and an in-place "American flag" sor¿-are illus-
trated with practical C programs. For heavy-duty sort-
ing, all three perform comparably, usually running at
least twice as fast as a good quicksort. We recommend
American flag sort for general use.

@ Computing Systems, Vol. 6 . No. 1 . Winter 1993

American national flag problem Dutch national flag problem

5.1 STRING SORTS

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Overview.

・Partition array into 3 subarrays according to first character of pivot.

・Recursively sort 3 subarrays. exclude first character when sorting middle subarray (since known to be equal)

3-way string quicksort

36

use Dijkstra 3-way partitioning algorithm

v

> v

< v

> v

< v

= v

< v

> v

< v

= v

< v

> v

= v

> v

< v

> v

< v

< v

v

> v

< v

> v

< v

v

< v

> v

< v

v

< v

> v

v

> v

< v

> v

< v

< v

recursively sort 3 subarrays

partition array
into 3 subarrays

she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

3-way string quicksort: trace of recursive calls

37

by

are

seashells

she

seashells

sea

shore

surely

shells

she

sells

sells

the

the

Trace of first few recursive calls for 3-way string quicksort (subarrays of length 1 not shown)

pivot

are

by

seashells

she

seashells

sea

shore

surely

shells

she

sells

sells

the

the

are

by

seashells

sea

seashells

sells

sells

shells

she

surely

shore

she

the

the

are

by

seashells

sells

seashells

sea

sells

shells

she

surely

shore

she

the

the

 private static void sort(String[] a)
 { sort(a, 0, a.length - 1, 0); }

 private static void sort(String[] a, int lo, int hi, int d)
 {
 if (hi <= lo) return;
 int pivot = charAt(a[lo], d);

 }

int lt = lo, gt = hi;
int i = lo + 1;
while (i <= gt)
{
 int c = charAt(a[i], d);
 if (c < pivot) exch(a, lt++, i++);
 else if (c > pivot) exch(a, i, gt--);
 else i++;
}

3-way string quicksort: Java implementation

38

Dijkstra 3-way partitioning
(using character at index d)

sort(a, lo, lt-1, d);
if (pivot != -1) sort(a, lt, gt, d+1);
sort(a, gt+1, hi, d);

sort 3 subarrays recursively

sort a[lo..hi] assuming first d
characters are equal

subarrays of length 0 or 1

3-way string quicksort vs. competitors

3-way string quicksort vs. MSD sort.

・In-place; short inner loop; cache-friendly.

・Not stable.

3-way string quicksort vs. standard quicksort.

・Typically uses ~ 2 n ln n character compares (instead of ~ 2 n ln n string compares).

・Faster for keys with long common prefixes (and this is a common case!)

Bottom line. 3-way string quicksort is often the method of choice for sorting strings.

39

Jon L. Bentley* Robert Sedgewick#

Abstract
We present theoretical algorithms for sorting and

searching multikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it is competitive with the best known C sort
codes. The searching algorithm blends tries and binary
search trees; it is faster than hashing and other commonly
used search methods. The basic ideas behind the algo-
rithms date back at least to the 1960s but their practical
utility has been overlooked. We also present extensions to
more complex string problems, such as partial-match
searching.

1. Introduction
Section 2 briefly reviews Hoare’s [9] Quicksort and

binary search trees. We emphasize a well-known isomor-
phism relating the two, and summarize other basic facts.

The multikey algorithms and data structures are pre-
sented in Section 3. Multikey Quicksort orders a set of II
vectors with k components each. Like regular Quicksort, it
partitions its input into sets less than and greater than a
given value; like radix sort, it moves on to the next field
once the current input is known to be equal in the given
field. A node in a ternary search tree represents a subset of
vectors with a partitioning value and three pointers: one to
lesser elements and one to greater elements (as in a binary
search tree) and one to equal elements, which are then pro-
cessed on later fields (as in tries). Many of the structures
and analyses have appeared in previous work, but typically
as complex theoretical constructions, far removed from
practical applications. Our simple framework opens the
door for later implementations.

The algorithms are analyzed in Section 4. Many of the
analyses are simple derivations of old results.

Section 5 describes efficient C programs derived from
the algorithms. The first program is a sorting algorithm

Fast Algorithms for Sorting and Searching Strings

that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more
space-efficient than multiway trees, and supports more
advanced searches.

In many application programs, sorts use a Quicksort
implementation based on an abstract compare operation,
and searches use hashing or binary search trees. These do
not take advantage of the properties of string keys, which
are widely used in practice. Our algorithms provide a nat-
ural and elegant way to adapt classical algorithms to this
important class of applications.

Section 6 turns to more difficult string-searching prob-
lems. Partial-match queries allow “don’t care” characters
(the pattern “so.a”, for instance, matches soda and sofa).
The primary result in this section is a ternary search tree
implementation of Rivest’s partial-match searching algo-
rithm, and experiments on its performance. “Near neigh-
bor” queries locate all words within a given Hamming dis-
tance of a query word (for instance, code is distance 2
from soda). We give a new algorithm for near neighbor
searching in strings, present a simple C implementation,
and describe experiments on its efficiency.

Conclusions are offered in Section 7.

2. Background
Quicksort is a textbook divide-and-conquer algorithm.

To sort an array, choose a partitioning element, permute
the elements such that lesser elements are on one side and
greater elements are on the other, and then recursively sort
the two subarrays. But what happens to elements equal to
the partitioning value? Hoare’s partitioning method is
binary: it places lesser elements on the left and greater ele-
ments on the right, but equal elements may appear on
either side.

* Bell Labs, Lucent Technologies, 700 Mountam Avenue, Murray Hill.
NJ 07974; jlb@research.bell-labs.com.

Princeton University. Princeron. NJ. 08514: rs@cs.princeton.edu.

Algorithm designers have long recognized the desir-
irbility and difficulty of a ternary partitioning method.
Sedgewick [22] observes on page 244: “Ideally, we would
llke to get all [equal keys1 into position in the file, with all

360

library of Congress call numbers

Summary of the performance of sorting algorithms

Frequency of calls to compareTo() and charAt().

40

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ n2 ¼ n2 Θ(1) ✔ compareTo()

mergesort n log2 n n log2 n Θ(n) ✔ compareTo()

quicksort 1.39 n log2 n * 1.39 n log2 n * Θ(log n) * compareTo()

heapsort 2 n log2 n 2 n log2 n Θ(1) compareTo()

LSD sort † 2 w n 2 w n Θ(n + R) ✔ charAt()

MSD sort ‡ 2 w n n logR n Θ(n + w R) ✔ charAt()

3-way string
quicksort

1.39 w n log2 R * 1.39 n log2 n * Θ(log n + w) * charAt()

* probabilistic
† fixed-length w keys
‡ average-length w keys

5.1 STRING SORTS

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Keyword-in-context search

Given a text of n characters, preprocess it to enable fast substring search

(find all occurrences of query string and surrounding context).

Applications. Linguistics, databases, web search, word processing, ….

42

~/Desktop/51radix> more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair
...

~/Desktop/51radix> java KWIC tale.txt 15
search
o st giless to search for contraband
her unavailing search for your fathe
le and gone in search of her husband
t provinces in search of impoverishe
 dispersing in search of other carri
n that bed and search the straw hold

the epoch
ishness it was the epoch of belief it w
 belief it was the epoch of incredulity

number of characters of
surrounding context

Suffix sort

43

input string

0 i t w a s b e s t i t w a s w
1 t w a s b e s t i t w a s w
2 w a s b e s t i t w a s w
3 a s b e s t i t w a s w
4 s b e s t i t w a s w
5 b e s t i t w a s w
6 e s t i t w a s w
7 s t i t w a s w
8 t i t w a s w
9 i t w a s w
10 t w a s w
11 w a s w
12 a s w
13 s w
14 w

form suffixes

3 a s b e s t i t w a s w
12 a s w
5 b e s t i t w a s w
6 e s t i t w a s w
0 i t w a s b e s t i t w a s w
9 i t w a s w
4 s b e s t i t w a s w
7 s t i t w a s w
13 s w
8 t i t w a s w
1 t w a s b e s t i t w a s w
10 t w a s w
14 w
2 w a s b e s t i t w a s w
11 w a s w

sort suffixes to bring query strings together

array of suffix indices
(in sorted order)

i t w a s b e s t i t w a s w
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Keyword-in-context search: suffix-sorting solution

・Preprocess: suffix sort the text.

・Query: binary search for query; scan until mismatch.

44

⋮
632698 s e a l e d _ m y _ l e t t e r _ a n d _ …
713727 s e a m s t r e s s _ i s _ l i f t e d _ …
660598 s e a m s t r e s s _ o f _ t w e n t y _ …
67610 s e a m s t r e s s _ w h o _ w a s _ w i …
4430 s e a r c h _ f o r _ c o n t r a b a n d …
42705 s e a r c h _ f o r _ y o u r _ f a t h e …
499797 s e a r c h _ o f _ h e r _ h u s b a n d …
182045 s e a r c h _ o f _ i m p o v e r i s h e …
143399 s e a r c h _ o f _ o t h e r _ c a r r i …
411801 s e a r c h _ t h e _ s t r a w _ h o l d …
158410 s e a r e d _ m a r k i n g _ a b o u t _ …
691536 s e a s _ a n d _ m a d a m e _ d e f a r …
536569 s e a s e _ a _ t e r r i b l e _ p a s s …
484763 s e a s e _ t h a t _ h a d _ b r o u g h …

⋮

KWIC search for “search” in Tale of Two Cities

Radix sorting: quiz 4

How much memory as a function of n?
 

A. Θ(1)

B. Θ(n)

C. Θ(n log n)

D. Θ(n2)

45

String[] suffixes = new String[n];
for (int i = 0; i < n; i++)
 suffixes[i] = s.substring(i, n);

Arrays.sort(suffixes);
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

3rd printing (2012)

Java 7u5 (each substring consumes constant extra memory)

Java 7u6 (each substring consumes linear extra memory)

n log n string compares

http://algs4.cs.princeton.edu

Algorithms 4/e fail

Q. How to efficiently form (and sort) the n suffixes?

46

input file characters Java 7u5 Java 7u6

amendments.txt 18 K 0.25 sec 2.0 sec

aesop.txt 192 K 1.0 sec out of memory

mobydick.txt 1.2 M 7.6 sec out of memory

chromosome11.txt 7.1 M 61 sec out of memory

String[] suffixes = new String[n];
for (int i = 0; i < n; i++)
 suffixes[i] = s.substring(i, n);

Arrays.sort(suffixes);
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

3rd printing (2012)

Θ(n2) time and space
to form suffixes!

http://algs4.cs.princeton.edu

The String data type: Java 7u6 implementation

47

public final class String implements Comparable<String>
{
 private char[] value; // sequence of characters in string
 private int hash; // cache of hashCode()
 …

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

String s = "Hello, World";

W O R L D

0 1 2 3 4

value[]

String t = s.substring(7, 12);
(allocates new char[] array ⇒ linear extra memory)

The String data type: Java 7u5 implementation

48

public final class String implements Comparable<String>
{
 private char[] value; // shared character array
 private int offset; // index of first char in string
 private int length; // length of string
 private int hash; // cache of hashCode()
 …

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

offset = 0

length = 12String s = "Hello, World";

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

offset = 7

length = 5

String t = s.substring(7, 12);
(reuses original char[] array ⇒ constant extra memory)

The String data type: performance summary

String data type (in Java). Sequence of characters (immutable).

Java 7u5. Immutable char[] array, offset, length, hash cache.

Java 7u6. Immutable char[] array, hash cache.

49

operation Java 7u5 Java 7u6

length 1 1

indexing 1 1

concatenation m + n m + n

substring extraction 1 n

immutable? ✔ ✔

memory 64 + 2n 56 + 2n

A Reddit exchange

50

I'm the author of the substring() change. As has
been suggested in the analysis here there were two
motivations for the change

• Reduce the size of String instances. Strings are
typically 20-40% of common apps footprint.

• Avoid memory leakage caused by retained
substrings holding the entire character array.

bondolo

http://www.reddit.com/r/programming/comments/1qw73v/til_oracle_changed_the_internal_string

Changing this function, in a bugfix release no
less, was totally irresponsible. It broke backwards
compatibility for numerous applications with errors
that didn't even produce a message, just freezing
and timeouts... All pain, no gain. Your work was
not just vain, it was thoroughly destructive, even
beyond its immediate effect.

cypherpunks

http://www.reddit.com/r/programming/comments/1qw73v/til_oracle_changed_the_internal_string

Suffix sort

Q. How to efficiently form (and sort) suffixes in Java 7u6?

A. Define Suffix class à la Java 7u5 String representation.

51

public class Suffix implements Comparable<Suffix>
{
 private final String text;
 private final int offset;

 public Suffix(String text, int offset) {
 this.text = text;
 this.offset = offset;
 }

 public int length() { return text.length() - offset; }
 public char charAt(int i) { return text.charAt(offset + i); }
 public int compareTo(Suffix that) { /* see textbook */ }
}

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

text[]

offset

private final String text;
private final int offset;

Suffix sort

Q. How to efficiently form (and sort) suffixes in Java 7u6?

A. Define Suffix class à la Java 7u5 String representation.

Optimizations. [5× faster and 32× less memory than Java 7u5 version]

・Use 3-way string quicksort instead of Arrays.sort().

・Manipulate suffix offsets directly instead of via explicit Suffix objects.

52

Suffix[] suffixes = new Suffix[n];
for (int i = 0; i < n; i++)
 suffixes[i] = new Suffix(s, i);

Arrays.sort(suffixes);
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

4th printing (2013)

http://algs4.cs.princeton.edu

Suffix arrays: theory

Conjecture. [Knuth 1970] Impossible to compute suffix array in Θ(n) time.

Proposition. [Weiner 1973] Can solve in Θ(n) time (suffix trees).

53

LINEAR PATTERN MATCHING ALGORITHMS

Peter Weiner

*The Rand Corporation, Santa Monica, California

Abstract

In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching
in linear time. Related problems, such as those discussed in [4], have pre-
viously been solved by efficient but sub-optimal algorithms. In this paper, we
introduce an interesting data structure called a bi-tree. A linear time algo-
rithm "for obtaining a compacted version of a bi-tree associated with a given
string is presented. With this construction as the basic tool, we indicate how
to solve several pattern matching problems, including some from [4], in linear
time.

I. Introduction

In 1970, Knuth, Morris, and Pratt [1-2] showed how to
match a given pattern into another given string in time
proportional to the sum of the lengths of the pattern
and string. Their algorithm was derived from a result
of Cook [3] that the 2-way deterministic pushdown lan-
guages are recognizable on a random access machine in
time O(n). Since 1970, attention has been given to
several related problems in pattern matching [4-6], but
the algorithms developed in these investigations us-
ually run in time which is slightly worse than linear,
for example O(n log n). It is of considerable interest
to either establish that there exists a non-linear
lower bound on the run time of all algorithms which
solve a given pattern matching problem, or to exhibit
an algorithm whose run time is of O(n).

In the following sections, we introduce an inter-
esting data structure, called a bi-tree, and show how
an efficient calculation of a bi-tree can be applied to
the linear-time (and linear-space) solution of several
pattern matching problems.

II. Strings, Trees, and Bi-Trees

In this paper, both patterns and strings are finite
length, fully specified sequences of symbols over a
finite alphabet [= {al ,a2 , ... ,at }. Such a pattern of
length m will be denoted as

P = P (1) P (2) ... P (m),

where P(i), an element of [, is the i th symbol in the
sequence, and is said to be located in the i th position.
To represent the substring of characters which begins
at position i of P and ends at position j, we write
P (i: j). That is, when i j, P (i: j) = P (i) ... P (j),
and P(i:j) = A, the null string, for i > j.

Let [* denote the set of all finite length strings
over [. strings WI and w2 in [* may be combined by
the operation of concatenation to form a new string
W = WI w2 . The reverse of a string P = A (1) ... A (m)
is the s t r ing pr = A (m) ... A (1).

The length of a string or pattern, denoted by 19(w)
for W E [*, is the number of symbols in the sequence.
For example, 19(P(i:j» = j-i+l if i j and is 0 if
i > j.

Informally, a bi-tree over [can be thought of as
two related t-ary trees sharing a common node set.

*This work was partially supported by grants from
the Alfred P. Sloan Foundation and the Exxon Education
Foundation. P. Weiner was at Yale University when this
work was done.

Before giving a formal definition of a bi-tree, we re-
view basic definitions and terminology concerning t-ary
trees. (See Knuth [7] for further details.)

A t-ary tpee T over [= {al, ... ,at } is a set of
nodes N which is either empty or consists of a poot,
nO E N, and t ordered, disjoint t-arY trees.

Clearly, every node ni E N is the root of some
t-ary tree T i which itself consists of n1 and t ordered,

iiidisjoint t-ary trees, say Tl , T2 , Tt • We call the
iiitree Tj a sub-tpee of T ; also, .all sub-trees of Tj are

considered to be sub-trees of T1 • It is natural to
associate with a tree T a successor function

S: NX[(N-{nO}) U {NIL}

defined for ni E Nand a j E L by

ni , the root of if is non-empty
s(ni'Oj) = {NIL if is empty.

It is easily seen that this function completely deter-
mines a t-ary tree and we write T = (N, nO'S).

If n' = S(n,a), we say that nand n' are connected
by a bpanah from n to n f which has a label of o. wet
call n' a son of n, and n the father of n'. The degree
of a node n is the number of sons of that node, that is,
the number of distinct a for which S(n,a) NIL. A node
of degree 0 is a leaf of the tree.

It is useful to extend the domain of S from Nx[
to (N U {NIL}) x [* (and extend the range to include
nO) by the inductive definition

(Sl) S(NIL,w) NIL for all w E [*
(S2) S(n,A) = n for all n E N
(S3) S(n,u.xJ) = S(S(n,w),a) for all n EN, w E L*,

and a E L:.

Not every S: Nx[(N-{nO}) U {NIL} is the successor
function of a t-ary tree. But a necessary and suffi-
cient condition for S to be a successor function of
some (unique, if it exists) t-ary tree can be expressed
in terms of the extended S. Namely, that there exists
exactly one choice of w such that S(nO'w} n for every
n E N. there exists a T such that T = (N,nO'S),
we say that S is

We may also associate with T a father function
F: N N defined by F(nO) = nO and for n' E N-{nO}'

F (n ') = n ¢) S (n ,a) = n' for s orne a E [.

“ has no practical virtue… but a historic  
 monument in the area of string processing. ”

(To appear in ALGORITHMICA)

On–line construction of su�x trees
1

Esko Ukkonen

Department of Computer Science, University of Helsinki,

P. O. Box 26 (Teollisuuskatu 23), FIN–00014 University of Helsinki, Finland

Tel.: +358-0-7084172, fax: +358-0-7084441

Email: ukkonen@cs.Helsinki.FI

Abstract.

An on–line algorithm is presented for constructing the su�x tree for a

given string in time linear in the length of the string. The new algorithm has

the desirable property of processing the string symbol by symbol from left to

right. It has always the su�x tree for the scanned part of the string ready.

The method is developed as a linear–time version of a very simple algorithm

for (quadratic size) su�x tries. Regardless of its quadratic worst-case this

latter algorithm can be a good practical method when the string is not too

long. Another variation of this method is shown to give in a natural way the

well–known algorithms for constructing su�x automata (DAWGs).

Key Words. Linear time algorithm, su�x tree, su�x trie, su�x automa-

ton, DAWG.

1
Research supported by the Academy of Finland and by the Alexander von Humboldt

Foundation (Germany).

1

A Space-Economical Suffix Tree Construction Algorithm

E D W A R D M. M O C R E I G H T

Xerox Polo Alto Research Center, Palo Alto, California

AaSTRXCeV. A new algorithm is presented for constructing auxiliary digital search trees to aid in
e x a c t - m a t c h substrlng searching. This algorithm has the same asymptotic running time bound as
previously published algorithms, but is more economical in space. Some implementation considera-
tions are discussed, and new work on the modification of these search trees in response to incremental
changes in the strings they index (the update problem) is presented.

KEY WORDS AND PHRASES: pattern matching algorithms, searching, search trees, context search,
substring search, analysis of algorithms

ca CATEGORIES: 3.74, 4 34, 5 32

Introduction

A number of computer applications need a basic function which locates a specific sub-
string of characters within a longer main string. The most obvious such application is
context searching within a text editor. Other applications include automatic command
completion by the keyboard handling executive of an operating system, and limited
pattern matching used in speech recognition [2]. This basic function is also useful as a
building block in the construction of more sophisticated pattern matches.

The naive algorithm to implement this function simply at tempts to match the sub-
string against the main string in all possible alignments. I t is straightforward but can
be slow since, for example, the program might reverify the fact tha t position 17 in the
main string is the character a almost as often as the number of characters in the substring
(consider the substring a a a a a a a b) . An asymptotically more efficient algorithm was
discovered by Knuth, Pratt , and Morris in 1970 [5]. I t involves preprocessing the sub-
string into a search automaton and then feeding the main string into the search auto-
maton, one character at a time. In both of these algorithms the average search time is at
least linear in the length of the main string.

I f one were expecting to do many substring searches in the same main string, it would
be worthwhile to build an auxiliary index to that main string to aid in the searches. A
useful index structure which can be constructed in time linear in the length of the main
string, and yet which enables substring searches to be completed in time linear in the
length of the substring, was first discovered by Weiner [8].

In addition, his auxiliary index structure permits one easily to answer several new
questions about the main string itself. For example, what is the longest substring of the
main string which occurs in two places? in k places? One can also transmit (or store) a
message with excerpts from the main string in minimum time (or spaco) by a dynamic
programming process which for each position of the message finds the longest excerpt of
the message which begins there and is a substring of the main string. This latter app}i-
cation motivated Weiner's original discovery.
Copyright (~) 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Assoc iat ion for Computing Machinery.
Author's address" Xerox Polo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304.

Jouraal of the Amociation for Computing Machinery, Vol. 23, No. 2, April 1976, pp. 262-272.

Suffix arrays: practice

Applications. Bioinformatics, information retrieval, data compression, …

Many ingenious algorithms.

・Constants and memory footprint very important.

・State-of-the art still changing.

54

year algorithm worst case memory

1991 Manber–Myers n log n 8 n

1999 Larsson-Sadakane n log n 8 n

2003 Kärkkäinen-Sanders n 13 n

2003 Ko-Aluru n 10 n

2008 divsufsort2 n log n 5 n

2010 sais n 6 n

good choices
(libdivsufsort)

about 10× faster
than Manber–Myers

see lecture videos

String sorting summary

We can develop linear-time sorts.

・︎Key compares not necessary for string keys.

・︎Use characters as index in an array.

We can develop sublinear-time sorts.

・︎Input size = total number of characters (not number of strings).

・︎Not all of the characters have to be examined.

Long strings are rarely random in practice.

・︎Goal is often to learn the structure!

・May need specialized algorithms.

55

© Copyright 2022 Robert Sedgewick and Kevin Wayne

56

© Copyright 2022 Robert Sedgewick and Kevin Wayne

