-

COS 217: Introduction to Programming Systems

Machine Language

% PRINCETON UNIVERSITY

-

Instruction Set Architecture (ISA)

There are many kinds of computer chips out there:

ARM (AARCHG4)
Intel x86 series
IBM PowerPC
RISC-V

MIPS

-/

Each of these different
“machine architectures”
understands a different
machine language - binary
encoding of instructions

(and, in the old days, dozens more)

-

Machine Language

The first part of this lecture (today) covers

* A motivating example from Assignment 6: Buffer Overrun
* The AARCH64 machine language

The second part (Wednesday) covers
* The assembly and linking processes

(@swimgtaralex (previoug glide); @olajidetunde -

https://unsplash.com/@swimstaralex
https://unsplash.com/@olajidetunde

[

Flashback to last lecture ...

-
t Gets Much, Much Worse...

Buffer overrun can overwrite return
address of a previous stack frame!

e Value can be an invalid address,
leading to a segfault, or it can cleverly
cause unintended control flow, or even

#include <stdio.h>

int main(voi

{

char name[12], c;

int 1 = 0, magic = 42;

printf("wWhat is your name?\n");

while ((c = aetchar()) !'= '\n')
name[i++] = c;

name[i] = '\@';

printf("Thank you, %s.\n", name);

print?[“The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

10, |5

0
=f g Return addr
name
text C
here magic
i
Id SP >

or here...

-

Assignment 6: Attack the “Grader” Program

-

Memory Map of Stack and BSS Section

readString’s pyf[o]
stackframe buf[1]

buf[i%i

rird

getName’s —
stackframe

main’'s —
stackframe

?2??
227
227

227
227

old X30
somewhere

name[0] —»
name[l] —>

name[47]—>

‘A0’ ‘\

l\@’

l\@’

Initially, the name
array in BSS 1s
blank (all @ bits).

Initially, the buf
array in readString
has garbage.

-
Memory Map of Stack and BSS Section

SP—21 227
readString’s puf(e1| ‘B’ name[O] —>| o’ . . .
stackframe bufl[1]| ‘o’ name[1] —» ‘\0"\ (Nothing is copied
coa| D7 to BSS until the
‘\O’ : .
e lqop filling buf
o finishes.)
You will put your
| . name + ‘\@’ 1into
buf[471] 727 name[47]—>| \g" the buf array.
777 297
getName’s —
stackframe old X30
somewhere
main’s —
stackframe
.
_ /

-

Memory Map of Stack and BSS Section

ESF) 72?7
readString’s pyf[o]

stackframe buf[1]

buf[i%i

rird

getName’s —
stackframe

main’'s —
stackframe

?2??
lB’
lol
lbl
l\@’

go here

227
227

old X30
somewhere

name[0] —»
name[l] —>

nhame[47 |=—»>

AR S

l\@’

l\@’

(Nothing is copied
to BSS until the
loop filling buf

adr x0, _sarade .
other \ flnlSheS .)
instructions

You will put the
instructions for
your attack (to
change grade) here

(

Memory Map of Stack and BSS Section

SP=231 222
readString’s puf(e1| ‘B’ name[0] —>| \g- | | |
stackframe buf[1] :o: name[j_]_P ‘\Q’ K (NOthlng lS. COplEd
. 150’ to BSS until the

loop filling buf

adr x0 rade
Now smash the ST finishes.)
stack like in instructions

the ‘B’ attack! M\ fhen You will put the
e 2$ﬁ2 - instructions for
buf [47] | Padding name[47]—>| ‘\p your attack (to
777 the stack change grade) here
getName’S —p | tO0 overwrite: g g
stackframe old X

somewﬁéﬁ& Replace with

main’'s — BSS address
stackframe where adr
9 instruction

_ will be put /

-

Memory Map of Stack and BSS Section

SP—2 727
readString’s ,,fe1| ‘B’ name[0] —>| g o |
stackframe buf[1]| ‘o’ name[1] — | ‘0’ = (Nothing is copied
. :bz ‘b’ to BSS until the
Now smash the a“'\r@X@' gUEeis a:d\r0>:0, grade 1909 filling but
stack like 1in R iﬁziﬁuctik finishes.)
PR, go here her]
the ‘B’ attack! then hen How do we write
22| paddin 25 e instructions into
et E‘;;'gigzk name[47]—>| B nane memory?
getName’s —— | to overwrite: Machine language!
stackframe sname [K]
. The address
main’s —s of our adr
stackframe instruction
19 in BSS
\ (in this example k=4) /

-

Agenda

11

AG “A” Attack

AARCHG64 Machine Language

AARCHG4 Machine Language after Assembly
AARCHG64 Machine Language after Linking

-
Machine Language: TOY — AARCHG4

Remember TOY?
INSTRUCTION FORMATS _ _
ARM is more complex, but the same ideas!

Format RR: | opcode | d | S | t | (0-6, A-B)
Format A: | opcode | d | addr | (7-9, C-F)

AARCHG64 machine language
 All instructions are 32 bits long, 4-byte aligned
e Some bits allocated to opcode: what kind of instruction is this?
e Other bits specify register(s)
e Depending on instruction, other bits may be used for
an immediate value, a memory offset, an offset to jump to, etc.

Instruction formats
e Variety of ways different instructions are encoded
e We’'ll go over quickly in class, to give you a flavor

12 » Refer to slides as reference for Assignment 6!
\ (Every instruction format you’ll need is in the following slides... we think...) j

-
AARCHG4 Instruction Format

msb: bit 31 Isb: bit O

! !

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Operation group
* Encoded in bits 25-28
e X101: Data processing - 3-register
e 100x: Data processing - immediate + register(s)
e 101x: Branch
e X1x0: Load/store

13

-

AARCHG4 Instruction Format

14

msb: bit 31 Isb: bit O

! !

WXSX 101X XXX rrrr XXXX XXrr rrrr rrrr

Op. Group: Data processing - 3-register
e Instruction width in bit 31: O = 32-bit, 1 = 64-bit
 Whether to set condition flags (e.g. ADD vs ADDS) in bit 29
* Second source register in bits 16-20
e First source register in bits 5-9
e Destination register in bits 0-4
* Remaining bits encode additional information about instruction

-

AARCHG4 Instruction Format

15|

msb: bit 31 Isb: bit O

! !
1000 1011 0000 0011 0000 0000 0100 0001

Example: add x1, x2, X3
e opcode = add
* Instruction width in bit 31: 1 = 64-bit
* Whether to set condition flags in bit 29: no
e Second source register in bits 16-20: 3
e First source register in bits 5-9: 2
e Destination register in bits 0-4: 1
e Additional information about instruction: none

-

AARCHG4 Instruction Format

16

msb: bit 31

!

Op. Group: Data processing - immediate + register(s)
 Instruction width in bit 31: 0 = 32-bit, 1 = 64-bit
 Whether to set condition flags (e.g. ADD vs ADDS) in bit 29

* Immediate value in bits 10-21 for 2-register instructions,
bits 5-20 for 1-register instructions

e Source register in bits 5-9
e Destination register in bits 0-4
* Remaining bits encode additional information about instruction

Isb: bit O

!

wXsl 00xx xXX11 1111 1111 11rr rrrr rrrr
wxx1l 0010 1xx1i 1111 1111 1111 11ir rrrr

-

AARCHG4 Instruction Format

17

msb: bit 31

!

Example: subs wl, w2, 42

opcode: subtract immediate

Instruction width in bit 31: O = 32-bit
Whether to set condition flags in bit 29: yes
Immediate value in bits 10-21: 101010, =42
First source register in bits 5-9: 2

e Destination register in bits 0-4: 1

e Additional information about instruction: none

Isb: bit O

!

0111 0001 0000 0000 1010 1000 0100 0001

-

AARCHG4 Instruction Format

18|

msb: bit 31

!

Example: mov x1, 42
e opcode: move immediate
e |nstruction width in bit 31: 1 = 64-bit
e Immediate value in bits 5-20: 101010, = 42
e Destination register in bits 0-4: 1

Isb: bit O

!

1101 0010 1000 0000 0000 0101 0100 0001

-

AARCHG4 Instruction Format

19

msb: bit 31

!

Op. Group: Branch

* Relative address of branch target in bits 5-23 for conditional branch

So, the values in the instruction must be shifted left by 2 bits.
This provides more range with fewer bits!

* Type of conditional branch encoded in bits 0-3

Isb: bit O

!

xxx1 @111 1111 1111 1111 1111 1111 1111
xxx1 @1xx 1111 1111 1111 1111 111X CCCC

e Relative address of branch target in bits 0-25 for unconditional branch (b) and function call (b 1)

e Because all instructions are 32 bits long and are 4-byte aligned, relative addresses end in 0O0.

-

AARCHG4 Instruction Format

20

msb: bit 31 Isb: bit O

! l
0001 @111 1111 1111 1111 1111 1111 1101

Example: b somelLabel

* This depends on where somelLabell is relative to this instruction!
For this example, somelLabel is 3 instructions (12 bytes) earlier
e opcode: unconditional branch

* Relative address in bits 0-25: two’'s complement of 11,.
Shift left by 2: 1100, = 12. So, offset is -12.

-

AARCHG4 Instruction Format

21

msb: bit 31 Isb: bit O

! l
1001 0111 1111 1111 1111 1111 1111 1101

Example: bl somelLabel

* This depends on where somelLabell is relative to this instruction!
For this example, somelLabel is 3 instructions (12 bytes) earlier
e opcode: branch and link (function call)

* Relative address in bits 0-25: two’'s complement of 11,.
Shift left by 2: 1100, = 12. So, offset is -12.

[

AARCHG4 Instruction Format

22

msb: bit 31 Isb: bit O

! !
0101 0100 0000 0000 0000 0000 0110 1101

Example: ble somelLabel

* This depends on where somelLabell is relative to this instruction!
For this example, somelLabel is 3 instructions (12 bytes) later

e opcode: conditional branch

* Relative address in bits 5-23: 11,. Shift left by 2: 1100, = 12

e Conditional branch type in bits 0-3: LE

-

AARCHG4 Instruction Format

msb: bit 31 Isb: bit O

! !

WWXX IXOX XXXI rrrr XXXX XXrr rrrr rrrr
WwXX 1xX0x XX11 1111 1111 11rr rrrr rrrr

Op. Group: Load / store
 Instruction width in bits 30-31: 00 = 8-bit, 01 = 16-bit, 10 = 32-bit, 11 = 64-bit
* For [Xn,Xm] addressing mode: second source register in bits 16-20

* For [Xn,offset] addressing mode: offset in bits 10-21,
shifted left by 3 bits for 64-bit, 2 bits for 32-bit, 1 bit for 16-bit

e First source register in bits 5-9
e Destination register in bits 0-4
* Remaining bits encode additional information about instruction

23

-

AARCHG4 Instruction Format

24

msb: bit 31 Isb: bit O

! l
1111 1000 0110 0010 0110 1000 0010 0000

Example: 1dr x0, [x1, x2]
* opcode: load, register+register
* Instruction width in bits 30-31: 11 = 64-bit
e Second source register in bits 16-20: 2
e First source register in bits 5-9: 1
e Destination register in bits 0-4: O
e Additional information about instruction: no LSL

-

AARCHG4 Instruction Format

25|

msb: bit 31 Isb: bit O

! l
1111 1001 0000 0000 0000 1111 1110 0000

Example: str x0, [sp,24]

e opcode: store, register+offset
Instruction width in bits 30-31: 11 = 64-bit
Offset value in bits 12-20: 11,, shifted left by 3 = 11000, = 24
“Source” (really destination!) register in bits 5-9: 31 = sp
“Destination” (really source!) register in bits 0-4: 0

e Remember that store instructions use the opposite convention from others:
“source” and “destination” are flipped!

[

AARCHG4 Instruction Format

26

msb: bit 31 Isb: bit O

! l
0011 1001 Q000 0000 0110 0011 1110 0000

Example: strb x0, [sp,24]

opcode: store, register+offset

Instruction width in bits 30-31: 00 = 8-bit

Offset value in bits 12-20: 11000, (don’t shift left!) = 24
“Source” (really destination!) register in bits 5-9: 31 = sp
“Destination” (really source!) register in bits 0-4: 0

e Remember that store instructions use the opposite convention from others:
“source” and “destination” are flipped!

-

AARCHG4 Instruction Format

27

msb: bit 31 Isb: bit O

! !

0iil 00@Q 1111 1111 1111 1111 11ir rrrr

ADR instruction

(Distinct from others w/ Op Group bits 100x)
e Specifies relative position of label (data location)
* 19 High-order bits of offset in bits 5-23
e 2 Low-order bits of offset in bits 29-30
e Destination register in bits 0-4

-

AARCHG4 Instruction Format

28|

msb: bit 31 Isb: bit O

! !
0101 0000 0000 0000 0000 0001 1001 @011

Example: adr x19, somelLabel

* This depends on where someLabel is relative to this instruction!
For this example, somelLabel is 50 bytes later

e opcode: generate address

* 19 High-order bits of offset in bits 5-23: 1100

e 2 Low-order bits of offset in bits 29-30: 10

* Relative data location is 110010, = 50 bytes after this instruction

e Destination register in bits 0-4:19

-
Agenda

AG “A” Attack
AARCHG64 Machine Language

AARCHG64 Machine Language after Assembly
AARCHG64 Machine Language after Linking

29

-
The Build Process

mypgm. C

Preprocess

mypgm. 1

Compile

mypgm. s

Assemble

Covered here << mypgm. o libc.a

. Link /

mypgm

30|

-

An Example Program

31

A simple (nonsensical) program,
in C and assembly:

Let’s consider the
machine language
equivalent...

-

Examining Machine Lang: RODATA

32

Assemble program; run objdump

X

$ gcc2l/ -c detecta.s
$ objdump —--full-contents ——section .rodata detecta.o

detecta.o:

Contents of section

file format elf64-1littleaarch64

. rodata:

0000
0010

54797065 20612063 6861723a 20004869 Type a char: .Hi

UELY

Offsets Contents

 Assembler does not know addresses
 Assembler knows only offsets

e "Type a char: " starts at offset OxO
e "Hi\n" starts at offset Oxe

-

Examining Machine Lang: TEXT

33|

Run objdump to see instructions

Assembly
language

-

Examining Machine Lang: TEXT

34

Run objdump to see instructions

Machine
language

-

Examining Machine Lang: TEXT

35|

Run objdump to see instructions

Offsets

Let’s examine one line at a time...

sub

Sp, Sp, #0x10

36|

msb: bit 31 Isb: bit O

! “//!!%!!!éégéég!!!!_\, !
1101 0001 0000 0000 0100 0011 1111 1111

sub sp, sp, #0x10

msb: bit 31 0: dlee43ff sub sp, sp, #0x10 Isb: bit O

! l
1101 0001 0000 0000 0100 0011 1111 1111

opcode: subtract immediate

Instruction width in bit 31: 1 = 64-bit

Whether to set condition flags in bit 29: no
Immediate value in bits 10-21: 10000, = Ox10 = 16
First source register in bits 5-9: 31 =sp

e Destination register in bits 0-4: 31 =sp

e Additional information about instruction: none

str

X30,

[sp]

str x30, [spl

39

msb: bit 31

4: f90003fe str x30, [spl]

!

Isb: bit O

!

1111 1001 0000 0000 0000 0011 1111 11160

opcode: store, register + offset

Instruction width in bits 30-31: 11 = 64-bit

Offset value in bits 12-20: 0

“Source” (really destination) register in bits 5-9: 31 = sp
e “Destination” (really source) register in bits 0-4: 30

e Additional information about instruction: none

-

adr

X0, @ <main>

adr X0, @ <main>

41

msb: bit 31

!
0001 0000 0000 VOO0 000D 0000 0006

8: 10000000 adr x0, 0 <main>

e opcode: generate address

* 19 High-order bits of relative address in bits 5-23: O
e 2 Low-order bits of relative address in bits 29-30: 0
* Relative data location is O bytes after this instruction
e Destination register in bits 0-4:0

e« Huh? That’s not where msg1 lives!
» Assembler knew that msg1l is a label within the RODATA section
» But assembler didn’t know address of RODATA section!

* S0, assembler couldn’t generate this instruction completely,
left a placeholder, and will request help from the linker

Isb: bit O

!
0000

-

Examining Machine Lang: TEXT

42

Run objdump to see instructions

| records

Relocation

-

R_AARCH64_ADR_PREL_L021 .rodata

[

Relocation Record 1

8: R_AARCH64_ADR PREL_L021 .rodata
N J

This part is always the same,
it’s the name of the machine architecture!

Dear Linker,

Please patch the TEXT section at offset Ox8.
Patch in a 21-bit* signed offset of an address, relative
to the PC, as appropriate for the adr instruction format.
When you determine the address of .rodata, use that
to compute the offset you need to do the patch.

Sincerely,
Assembler

a4 * 19 High-order bits of relative address in bits 5-23
2 Low-order bits of relative address in bits 29-30 y

-

bl

O <printf>

45|

bl 0 <printf>

40|

msb: bit 31

!
1001 0100 0000 0000 0000 0000 0000

c: 94000000 bl 0 <printf>

e opcode: branch and link
e Relative address in bits 0-25: 0

e Huh? That’s not where printf lives!
e Assembler had to calculate [addr of printf] - [addr of this instr]

» But assembler didn’t know address of printf -
it’s off in some library (Libc) and isn’t present (yet)!

* S0, assembler couldn’t generate this instruction completely,
left a placeholder, and will request help from the linker

Isb: bit O

!
0000

-

R_AARCH64 _CALL26 printf

-
Relocation Record 2

c: R_AARCH64_CALL26

printf

Dear Linker,

Please patch the TEXT section at offset Oxc. Patch
in a 26-bit signed offset relative to the PC, appropriate
for the function call (bl) instruction format. When you
determine the address of printf, use that to compute
the offset you need to do the patch.

Sincerely,
Assembler

48|

-

bl

O <getchar>

-
bl 0 <getchar>

msb: bit 31 10: 94000000 bl 0 <getchars Isb: bit O

! !
1001 0100 0000 0000 0000 0000 0000 0000

e opcode: branch and link
e Relative address in bits 0-25: 0

e Same situation as before - relocation record coming up!

50,

[

Relocation Record 3

10: R_AARCH64_ CALL26 getchar

Dear Linker,

Please patch the TEXT section at offset Ox10.
Patch in a 26-bit signed offset relative to the PC,
appropriate for the function call (bl) instruction format.
When you determine the address of getchar, use that
to compute the offset you need to do the patch.

Sincerely,
Assembler

51

-

cmp

wo, #0x41

cmp w@, #0x41

msb: bit 31 14: 7101041f cmp w0, #0x41l Isb: bit O

! l
0111 0001 Q000 0001 0000 0100 0001 1111

* Recall that cmp is really an assembler alias:
this is the same instruction as subs wzr, w0, 0x41

e opcode: subtract immediate

Instruction width in bit 31: O = 32-bit

Whether to set condition flags in bit 29: yes

Immediate value in bits 10-21: 1000001, = Ox41 = ‘A’
First source register in bits 5-9: O

e Destination register in bits 0-4: 31 = wzr

* Note that register #31 (11111,) is used to mean either sp or xzr/wzr,
depending on the instruction

-

b.ne

24 <skip>

54

-

b.ne 24 <skip>

55|

msb: bit 31

!

18: 54000061 b.ne 24 <skip>

Isb: bit O

!

0101 0100 0000 0000 000D 0000 0110 0001

 This instruction is at offset 0x18, and skip is at offset 0x24,
which is Ox24 - 0x18 = Oxc = 12 bytes later

e opcode: conditional branch
* Relative address in bits 5-23: 11,. Shift left by 2: 1100, = 12
e Conditional branch type in bits 0-4: NE

* No need for relocation record!
* Assembler had to calculate [addr of skip] - [addr of this instr]
» Assembler did know offsets of skip and this instruction

* S0, assembler could generate this instruction completely,
and does not need to request help from the linker

R_AARCH64_ADR_PREL_L0O21 .rodata+0xe

[

Relocation Record 4

1c: R_AARCH64_ADR_PREL_L021 . rodata+0xe

Dear Linker,

Please patch the TEXT section at offset Ox1c.
Patch in a 21-bit signed offset of an address, relative
to the PC, as appropriate for the adr instruction format.
When you determine the address of .rodata, add Oxe
and use that to compute the offset you need to do the

patch.

Sincerely,
Assembler

57

-

Another printf, with relocation record...

58

-

Last Example: Your Turn!

59

What does this relocation record mean?

20: 94000000

See context on
previous slides with
parallel records:

bl printf (#50)

bl getchar (#53)

bl 0 <printf>
20: R_AARCH64_CALL26 printf

Dear Linker,

Please patch the TEXT section at offset 0x20.
Patch in a 26-bit signed offset relative to the PC,
appropriate for the function call (bl) instruction format.
When you determine the address of printf, use that to
compute the offset you need to do the patch.

Sincerely,
Assembler

-
Everything Else is Similar...

60,

Exercise for you:
using information
from these slides,
create a bitwise
breakdown of

these instructions,
and convince yourself
that the hex values
are correct!

-

Agenda

61

A6 “A” Attack

AARCHG64 Machine Language

AARCHG4 Machine Language after Assembly
AARCHG4 Machine Language after Linking

-
From Assembler to Linker

Assembler writes its data structures to .o file

Linker:
* Reads .o file
* Writes executable binary file
* Works in two phases: resolution and relocation

62

63

Linker Resolution

$ gcc2l7 prontf.c

prontf.c: In function 'main':

prontf.c:6:1: implicit declaration of function 'prontf' [-Wimplicit-function-declaration]
{ prontf("hello, world\n");

/tmp/ccjA2CnG.o: In function "main':
prontf.c: (.text+0x10): undefined reference to “prontf'
collect2: error: ld returned 1 exit status

Resolution

e Linker resolves references

For our sample program, linker:
* Notes that labels getchar and printf are unresolved
* Fetches machine language code defining getchar and printf from libc.a
* Adds that code to TEXT section
e Adds more code (e.g. definition of _start) to TEXT section too
* Adds code to other sections too

-

Linker Relocation

64

@impatriokt

e Linker patches (“relocates”) code

e Linker traverses relocation records,
patching code as specified

https://unsplash.com/@impatrickt

-

Examining Machine Language: RODATA

65

Link program; run objdump on final exectuable

$ gcc217 detecta.o -o deteé?a
$ objdump ——full-contents ——section .rodata detecta

detecta: file format elf64-littleaarch64

Contents of section .rodata:

400710 01000200 00000000 00000000 00000000 .+.sesasssnsnnans
400720 |54797065 20612063 6861723a 20004869 Type a char: .Hi
400730 (0200 ..

\ RODATA is at 0x400710
Addresses, Starts with some header info
not offsets Real start of RODATA is at 0x400720

"Type a char: " starts at 0x400720
"Hi\n" starts at 0x40072e

-

Examining Machine Language: TEXT

66|

Addresses,
not offsets

Run objdump to see instructions

-

Examining Machine Language: TEXT

Additional code

-
Examining Machine Language: TEXT

$ objdump —-—-disassemble —-reloc detecta
Didn’t | teach
you anything,
Linker?

detecta: file format elf64-1littleaarch64

0000000000400650 <main>:
400650: d10043ff sub sp, sp, #0x10
400654: fO0003fe str x30, [spl
400658: 10000640 adr x0, 400720 <msgl>
40065c: 97ffffal bl 4004e0 <printf@plt>
400660: 97ffffoc bl 4004d0 <getchar@plt>
400664 : 7101041f cmp w@, #0x41
400668: 54000061 b.ne 400674 <skip>
40066¢C: 50000600 adr x0, 40072e <msg2>
400670: 97ffffoc bl 4004e0 <printf@plt>

0000000000400674 <skip>:
400674: 52800000 mov w@, #0x0
400678: f94003fe ldr x30, [spl

40067cC: 910043ff add sp, sp, #0x10 No relocation records!
400680: de5f03co ret

Let's see what the linker
did with them...

-

adr

x0, 400720 <msgl>

adr x0, 400720 <msgl>

70|

msb: bit 31 400658: 10000640 adr x@, 400720 <msgl> Isb: bit O

! !
0001 0000 0000 0000 0000 0110 0100 0000

e opcode: generate address

* 19 High-order bits of offset in bits 5-23: 110010

e 2 Low-order bits of offset in bits 29-30: 00

e Relative data location is 11001000b = Oxc8 bytes after this instruction
e Destination register in bits 0-4:0

 msgl is at 0x400720; this instruction is at 0x400658
e 0x400720 - 0x400658 = Oxc8 v

-

bl

4004e@ <printf@plt>

bl

72

4004e0 <printf@plt>
TSb: OIt31 ™ipeesc: o7ffffal bl 4004e@ <printfeplt

Isb: bit O

!

1001 011 1111 1111 1111 1111 1010 0001

e opcode: branch and link

* Relative address in bits 0-25: 26-bit two’s complement of 1011111, .
But remember to shift left by two bits (see earlier slides)!
This gives -10111 1100, = -0x17c

e printf is at 0x4004e0; this instruction is at 0x40065c¢
e 0x4004e0 - 0x40065¢ = -0x17¢ v

-

Everything Else is Similar...

73|

-

Summary

74

AARCH64 Machine Language

e 32-bit instructions
* Formats have conventional locations for opcodes, registers, etc.

Assembler
* Reads assembly language file
e Generates TEXT, RODATA, DATA, BSS sections
e Containing machine language code
e Generates relocation records
e Writes object (.0) file

Linker
e Reads object (.0) file(s)
e Does resolution: resolves references to make code complete
e Does relocation: traverses relocation records to patch code
e Writes executable binary file

[

Wrapping Up the Course

76

Precepts all done!
Assignment 5 due on Thursday (4/21) at 9:00 PM

Assignment 6
* Partnered assignment
e Due on Dean’s Date (Tuesday, May 3) at 5 PM ET
e Extensions past 11:59 PM require permission of the Dean

Extensive office hours during reading period and exam period
e Exact schedule will be announced on Ed

Final exam: Tuesday, 5/10, 9:00 AM - 12:00 PM ET, in Friend 101

* Closed-book, closed-notes, 1-page study sheet, no electronics

e Details and old exams are available at
https://www.cs.princeton.edu/courses/archive/spr22/cos217/exam?2.html

* Review and Q&A sessions scheduled after Dean's date - announced on Ed

https://www.cs.princeton.edu/courses/archive/spr22/cos217/exam2.html

[

We Have Covered:

7

Programming in the large
* Program design
* Programming style
e Building
e Testing
e Debugging
e Data structures
* Modularity
e Performance
* Version control

Programming at several levels
 The C programming language
* ARM Assembly Language
* ARM Machine Language
* (just a taste of) the bash shell

Core systems and organization ideas
e Storage hierarchy
e Compile, Assemble, Link
* (just a taste of) Processes and VM

The end.

return EXIT_ SUCCESS;

