-

COS 217: Introduction to Programming Systems

Assembly Language

Part 2

% PRINCETON UNIVERSITY

-

Goals of this Lecture

Help you learn:
* Intermediate aspects of AARCH64 assembly language:
e Control flow with signed integers
e Control flow with unsigned integers
* Arrays
e Structures

-

Agenda

Flattened C code

Control flow with signed integers
Control flow with unsigned integers
Arrays

Structures

-

Flattened C Code

Problem

e Translating from C to assembly language is difficult
when the C code doesn’t proceed in consecutive lines

Solution
* Flatten the C code to eliminate all nesting

-

Flattened C Code

C

Flattened C

-

Flattened C Code

C

Flattened C

-

Agenda

Flattened C code

Control flow with signed integers
Control flow with unsigned integers
Arrays

Structures

-

1T Example

C

Flattened C

-
1T Example

Flattened C Assembly
int 1i; .section ".bss"
. i: .skip 4
if (i >= 0) goto endifl;
i = -1; .section ".text"
endifl:
adr x0, 1

ldr wl, [x0]
., cmp wl, ©
bge endifl
neg wl, wil
endifl:

Assembler shorthand for
subs wzr, wl, 0

Notes:

cmp instruction: compares operands, sets condition flags

bge instruction (conditional branch if greater than or equal):
Examines condition flags in PSTATE register

-

1f..else Example

10|

C

Flattened C

-

1f..else Example

11

Flattened C

Note:
b instruction (unconditional branch)

Assembly

-

while Example

12

C

Flattened C

-

while Example

Flattened C Assembly

Note:
ble instruction (conditional branch if less than or equal)

13|

-

for Example

14

C

Flattened C

4
o\ ?
I/ What goes where”

Q: Which section(s) would power, base, exp, 1 go into?

int power = 1;
int base;

int exp;

int 1i;

All on stack
power in .data and rest in .rodata
All in .data

power in .bss and rest in .data

mo o w >

15| power in .data and rest in .bss

-

for Example

16|

Flattened C

Assembly

-

for Example

17

Flattened C

Assembly

-
Control Flow with Signed Integers

Unconditional branch

b label Branch to label
Compare

cmp Xm, Xn Compare Xm to Xn

cmp Wm, Wn Compare Wm to Wn

e Set condition flags in PSTATE register

Conditional branches after comparing signed integers

beq label Branch to label if equal

bne label Branch to label if not equal

blt label Branch to label if less than

ble label Branch to label if less or equal
bgt label Branch to label if greater than

bge label Branch to label if greater or equal

18I
\ e Examine condition flags in PSTATE register)

(

Signed vs. Unsigned Integers

20

In C

* Integers are signed or unsigned
e Compiler generates assembly language instructions accordingly

In assembly language

* Integers are neither signed nor unsigned
e Distinction is in the instructions used to manipulate them

Distinction matters for
e Division (sdiv VS. udiv)

* Control flow (Yes, there are 32 bits
 Which is the larger 32-bit integer value? there. You don’t have to

1111111111111211111111111211111111 count)

' 00000000000000000000000000000000

-
Control Flow with Unsigned Integers

Unconditional branch

b label b label Branch to label
Compare

cmp Xm, Xn cmp Xm, Xn Compare Xm to Xn

cmp Wm, Wn cmp Wm, Wn Compare Wm to Wn

e Set condition flags in PSTATE register

Conditional branches after comparing unsigned integers

beq label beq label Branch to label if equal

bne label bne label Branch to label if not equal

blt label blo label Branch to label if lower

ble label bls label Branch to label if lower or same
bgt label bhi label Branch to label if higher

bge label bhs label Branch to label if higher or same

21
\ Examine condition flags in PSTATE register)

-

while Example

23|

Flattened C

Note:

Assembly: Signed > Unsigned

bls instruction (instead of b le)

-
Alternative Control Flow: CBZ, CBNZ

Special-case, all-in-one compare-and-branch instructions
DO NOT examine condition flags in PSTATE register

cbz Xn, label Branch to label if Xn is zero
cbz Wn, label Branch to label if Wn is zero
cbnz Xn, label Branch to label if Xn is nonzero
cbnz Wn, label Branch to label if Wn is nonzero

24

-

Agenda

Flattened C

Control flow with signed integers
Control flow with unsigned integers
Arrays

Structures

25|

-

Arrays: Brute Force

26

C

To do array lookup, need to
compute address of a[i] = *(a+i)
Let’s take it one step at a time...

Assembly

-

Arrays: Brute Force

Assembly
.section ".bss" _

a: .skip 400 Registers Memory

i: .skip 8 —

n: .skip 4 X0] 1000

2
.section ".text" x1 1 1004
W2 51 2|42 | 1008

mov x1, 2 .
adr x0, a
sl x1, x1, 2
add x0, x0, x1 99 1396
ldr w2, [x0] I
adr x@, n 1 1400
str w2, [x0] N 1404

27

-

Arrays: Brute Force

Assembly
.section ".bss" _

a: .skip 400 Registers Memory

i: .skip 8 —

n: .skip 4 x@ | 1000 0 1000

2
.section ".text" x1 1 1004
W2 51 2| 42 | 1008

mov X1, 2
adr x0, a
sl x1, x1, 2
add x0, x0, x1 99 1396
ldr w2, [x0] I
adr x0, n 1 1400
str w2, [x0] N 1404

28|

-

Arrays: Brute Force

Assembly
.section ".bss" _

a: .skip 400 Registers Memory

i: .skip 8 —

n: .skip 4 x@ | 1000 0 1000

8
.section ".text" x1 1 1004
W2 51 2| 42 | 1008

mov X1, 2
adr x0, a
sl x1, x1, 2
add x0, x0, x1 99 1396
ldr w2, [x0] I
adr x0, n 1 1400
str w2, [x0] N 1404

29|

-

Arrays: Brute Force

Assembly
.section ".bss" _

a: .skip 400 Registers Memory

i: .skip 8 —

n: .skip 4 X0 | 1008 0 1000

8
.section ".text" x1 1 1004
W2 51 2| 42 | 1008

mov X1, 2
adr x0, a
sl x1, x1, 2
add x0, x0, x1 99 1396
ldr w2, [x0] I
adr x0, n 1 1400
str w2, [x0] N 1404

30|

-

Arrays: Brute Force

Assembly
.section ".bss" _

a: .skip 400 Registers Memory

i: .skip 8 —

n: .skip 4 x@ | 1008 0 1000

8
.section ".text" x1 1 1004
w2 | 42 51 2| 42 | 1008

mov X1, 2
adr x0, a
sl x1, x1, 2
add x0, x0, x1 99 1396
ldr w2, [x0] I
adr x0, n 1 1400
str w2, [x0] N 1404

31

-

Arrays: Brute Force

Assembly
.section ".bss" _

a: .skip 400 Registers Memory

i: .skip 8 —

n: .skip 4 X0 | 1404 0 1000

8
.section ".text" x1 1 1004
w2 | 42 51 2| 42 | 1008

mov X1, 2
adr x0, a
sl x1, x1, 2
add x0, x0, x1 99 1396
ldr w2, [x0] I
adr x0, n 1 1400
str w2, [x0] N 1404

32

(

Arrays: Brute Force

33

Assembly
.section ".bss"

a: .skip 400

i: .skip 8

n: .skip 4

.section ".text"

mov X1, 2

adr
sl
add
ldr
adr
str

X0, a
x1, x1, 2
X0, x0, x1

w2,

[x0]

X0, n

w2,

[x0]

Registers
x@ | 1404
x1| 8
w2 42

Memory

42

42

1000
1004
1008

1396
1400

1404

-

Arrays: Register Offset Addressing

34

C Brute-Force Register Offset

This uses a different addressing mode for the load

-

Memory Addressing Modes

35|

ldr W,
ldr W,
ldr W,
ldr W,

XN, offset]
Xn]
Xn, Xm]

XN, Xm, LSL n]

Address loaded:

Xn+offset (-28 < offset < 214)
Xn (shortcut for offset=0)
Xn+Xm

XN+(Xm<<n) (n =3 for 64-bit, 2 for 32-bit)

All these addressing modes also available for 64-bit loads:

ldr Xt, [Xn, offset]

etc.

Xn+offset

-

Agenda

Flattened C
Control flow with signed integers

Control flow with unsigned integers

Arrays

Structures

36|

-

Structures: Brute Force

37

C Assembly

X0 RAM

19

-
|> Which mode is a la mode?

38|

Q: Which addressing mode is most
appropriate for the last store?

o o0 w @

str Wi,
str Wi,
str Wi,
str Wi,

XN, offset]
Xn]
Xn, Xm, LSL n]

Xn, Xm]

.section ".bss"
myStruct: .skip 8

.section ".text" X0

adr x0, myStruct

mov wl, 18
str wl, [x0]

mov wl, 19
str ?7?7?

A is the simplest option:
the only one that requires
no additional setup.

RAM

18

19

-

Structures: Offset Addressing

Brute-Force Offset

19

W
©

-
Structures: Padding

C Assembly

Three-byte
pad here

4, not 1

Beware:
As we've seen, Compiler sometimes inserts padding after fields

40|

-

Structures: Padding

41

AARCH®G4 rules

Data type

unsigned) char
unsigned) short

unsigned) int

()

()

()
(unsigned) long
float
double

long double

any pointer

if struct is within an array

Within a struct, field must

begin at address that is evenly
divisible by:

e Compiler may add padding after last field

[

Summary

Intermediate aspects of AARCHG64 assembly language...

Flattened C code

Control transfer with signed integers

Control transfer with unsigned integers

Arrays
e Addressing modes

.| Structures
_ e Padding)

-

Appendix

43

Setting and using condition flags in PSTATE register

-

Setting Condition Flags

44

Question

* How does cmp (or arithmetic instructions with “s” suffix)
set condition flags?

-
Condition Flags

Condition flags
* N: negative flag: set to 1 iff result is negative
e Z: zero flag: set to 1 iff result is zero

e C: carry flag: set to 1 iff carry/borrow from msb (unsigned overflow)
 V: overflow flag: set to 1 iff sighed overflow occurred

45|

-
Condition Flags

Example: adds dest, srcl, src2
e Compute sum (srcl+src?2)
 Assign sum to dest
eN:setto 1iffsum<0
e /:setto 1iff sum ==
e C: set to 1 iff unsigned overflow: sum < srclorsrc?2

e V:set to 1 iff sighed overflow:
(Srcl>0&&src2>0&&sum<0) ||
(Srcl<0&&src2 <0 &&sum >=0)

40|

-
Condition Flags

Example: cmp srcl, src2
e Recall that this is a shorthand for subs xzr, srcl, src?2
e Compute sum (srcl+(-src?2))
* Throw away result
e N:setto 1iffsum<0O
e /:setto 1iff sum==0 (i.e., srcl == src2)
e C: set to 1 iff unsigned overflow (i.e., src1l >= src2)

e V:set to 1 iff sighed overflow:
(Srcl>0&&src2<0&&sum<0) ||
(Srcl<0&&src2 >0 && sum >=0)

a7

-

Unsigned comparison

48|

Why is carry bit set if src1 >= src2? Informal explanation:

(1) largenum - smallnum

e largenum + (two’s complement of smallnum) does cause carry
[) : C:j_

(2) smallnum - largenum (below)

e smallnum + (two’s complement of largenum) does not cause carry
[) : C:O

-

Using Condition Flags

49

Question
* How do conditional branch instructions use the condition flags?

Answer
* (See following slides)

-

Conditional Branches: Unsigned

After comparing unsigned data

Branch Use of condition flags
instruction

beq label Z

bne label ~Z

blo label ~C

bhs label C

bls label (~C) | Z
bhi label C&(~2)

Note:

e If you can understand why b Lo branches iff ~C

e ...then the others follow
50

-

Conditional Branches: Unsigned

51

Why does blo branch iff C? Informal explanation:

(1) largenum - smallnum (not below)

e largenum + (two’s complement of smallnum) does cause carry
= C=1 = don’t branch

(2) smallnum - largenum (below)

e smallnum + (two’s complement of largenum) does not cause carry
= C=0 = branch

-

Conditional Branches: Sighed

52

After comparing signhed data

Branch Use of condition flags
instruction

beq label Z

bne label ~Z

blt label VAN

bge label ~(V"™ N)

ble label (VAN) | Z
bgt label ~(V~AN) | 2)

Note:

* [f you can understand why b Lt branches iff VAN
e ... then the others follow

-

Conditional Branches: Signed

Why does blt branch iff VAN?
Informal explanation:

(1) largeposnum -
smallposnum (not less than)

(2) smallposnum -
largeposnum (less than)

(3) largenegnum -
smallnegnum (less than)

(4) smallnegnum -
largenegnum (not less than)

e Certainly correct result
e = V=0, N=0, V*"N==0 = don’t branch

e Certainly correct result
e = V=0, N=1, V’N==1 = branch

e Certainly correct result
e > V=0, N=1= (V*N)==1 = branch

e Certainly correct result
e = V=0,N=0 = (V*N)==0 = don't branch

-

Conditional Branches: Signed

(9) poshum - negnum
(not less than)

(6) posnum - negnum
(not less than)

(/) negnum - posnum
(less than)

(8) negnum - posnum
(less than)

e Suppose correct result

*= V=0,N=0 = (V*N)==0 = don't branch

e Suppose incorrect result

*= V=1,N=1 = (V*N)==0 = don't branch

e Suppose correct result

e > V=0,N=1 = (V*N)==1 = branch

e Suppose incorrect result

e = V=1,N=0 = (V™N)==1 = branch

