-

COS 217: Introduction to Programming Systems

Pointers, Arrays, and Strings

% PRINCETON UNIVERSITY

POINTERS

-

Pointers in C

So... what's a pointer?
A pointeris a variable
 |ts value is the location of another variable

 “Dereference” or “follow” the pointer to read/write
the value at that location

Why is that a good idea?

 Copying large data structures is inefficient; copying pointers is fast

e X=Yis a one-time copy: if y changes, x doesn’t “update”

 Parameters to functions are copied; but handy to be able to modify value

 Often need a handle to access dynamically allocated memory

https://unsplash.com/@rbw500

[

Straight to the Point

Pointer types are target dependent

e Example: “int *p;” - declares p to be a pointer to an int
« We'll see “generic” pointers later

Values are memory addresses

e ...SOSize is architecture-dependent - 8 bytes on ARMvS8
 NULL macro in stddef.h for special pointer guaranteed not to point to any variable

Pointer-specific operators

 Address-of operator (&) - creates a pointer
 Dereference operator (*) - follows a pointer

Other pointer operators
 Assignment operator: =
 Relational operators: ==, I=, >, <=, etc.
 Arithmetic operators: +, —, ++, -=, |, etc.

-
To lllustrate the Point...

int life = 42;

int jackie = 42;

life 42 K
jackie 42 k+4

int xadams = &life;

adams
int xbkn = &jackie; ~—— k| k+8

int *xkmeta = &adams; bkn

printf("%d %d\n",
adams == bkn, @ 1

~—— k+4| k+16

== , meta \
*kadams *xbkn) ; o8| 1o
printf(”%d %d %d %d S%d\n",
meta == &adams,

meta == &bkn,

*meta == adams, 1 @ 1 @ 1

xmeta == bkn,
skmeta == xbkn);

CIN
I) What Points to What?

life 47 k
jackie 42 k+4

adams
adams = bkn; = K| k+8

bkn
N —————
printf("sd %d\n", kK+4 | k+16
adams == bkn,
xadams == xbkn); meta \ kg | Kioa

QoW
N S
RO RS

(

What Points to Wh

at?

adams = bkn;

printf("%sd %d\n",

adams == bkn,
xadams == xbkn);
printf(”%d %d %d %d S%d\n",
meta == &adams,
meta == &bkn,
xmeta == adams,
xmeta == bkn,
skmeta == xbkn);

life
jackie

adams

bkn

1 1 meta

10111

42

42

+4 Kk

— k+4

N— k48

K+8

k+16

k+24

-
Pointer Declaration Gotcha

Pointer declarations can be written as follows: int* p;
This is equivalent to: int *p;

but the former seemingly emphasizes that the type of p is (int *).

Even though this syntax seems more natural, and you are welcome to use it,
it isn’t how the designers of C thought about pointer declarations.

So beware! This declaration: int* pl, p2;

really means: int *pl; int p2;

To declare both p1 and p2 as pointers, need: int* pl; int* p2;
g Or, the following works: int *pl, *p2;

~

ARRAYS /I”
/

(@zburival

https://unsplash.com/@zburival

-
Refresher: Java Arrays

. : public static void arrays() {
Always dynamically allocated intl] arrl = {1, 2, 31;
 Even when the values are known at int[] arr2 = new int[3]:

compile time (e.g. initializer lists) for(int c = 0;
Cc < arr2.length; c++)

* Access via a reference variable arr2[c] = 4xc;

int[] arr3 = arrl;
s

local variables dynamically allocated
I variables

arrl

arr2

arr3

10

-

C Arrays

e Can be statically allocated

as local variables

. Length must be known at compile time ~ Y01d arrays() {

int c;

. : int arrll[] = {1, 2, 3};
Can also be dynamically allocated int arr2[3];

« We won’t see this until Lecture 8 int arr2len =
sizeof(arr2)/sizeof(int);

arrl[o]| 1 for (c = 0; c < arr2len; c++)
——— | arr2[c{_= 4*€;
arrl[2]| 3 , '
arr2[0]| @
arr2[1]| 4
11 arr2[2]| 8

-

C Arrays

e Can be statically allocated

as local variables

. Length must be known at compile time ~ Y01d arrays() {

int c;

. : int arrl[] = {1, 2, 3};
Can also be dynamically allocated int arr2[3];

« We won’t see this until Lecture 8 int arr2len =
sizeof(arr2)/sizeof(int);

arrl[o]| 1 for (c = 0; c < arr2len; c++)
——— | arr2[c{_= 4*€;
arrl[2]| 3 , '
arr2[0]| @
arr2[1]| 4
12 arr2[2]| 8

-

C Arrays

e Can be statically allocated

as local variables

. Length must be known at compile time ~ Y01d arrays() {

int c;

. : int arrll[] = {1, 2, 3};
Can also be dynamically allocated int arr2[3]:

« We won’t see this until Lecture 8 int arr2len =
sizeof(arr2)/sizeof(int);

arrl[o]| 1 for (c = 0; c < arr2len; c++)
——— | arr2[c{_= 4*€;
arrl[2]| 3 , '
arr2[0]| @
arr2[1]| 4
13 arr2[2]| 8

-

C Arrays

e Can be statically allocated

as local variables

. Length must be known at compile time ~ Y01d arrays() {

int c;

. : int arrll[] = {1, 2, 3};
Can also be dynamically allocated int arr2[3];

« We won’t see this until Lecture 8 int arr2len =
sizeof(arr2)/sizeof(int);

arrl[o]| 1 for (c = 0; c < arr2len; c++)
——— | arr2[c{_= 4*€;
arrl[2]| 3 , '
arr2[0]| @
arr2[1]| 4
14 arr2[2]| 8

-

C Arrays

e Can be statically allocated

as local variables

. Length must be known at compile time ~ Y01d arrays() {

int c;

. : int arrll[] = {1, 2, 3};
Can also be dynamically allocated int arr2[3];

« We won’t see this until Lecture 8 int arr2len =
sizeof(arr2)/sizeof(int);

arrl[o]| 1 for (c = 0; c < arr2len; c++)
——— | arr2[c{_= 4*€;
arrl[2]| 3 , '
arr2[0]| @
arr2[1]| 4
15 arr2[2]| 8

[

Pointer/Array Interplay

16|

* Array name alone can be
used as a pointer: arr vs. &arr[0]

void arrays() {

int c;

int arrll] = {1, 2, 3};

int arr2[3];

int arr2len =
sizeof(arr2)/sizeof(int);

for (c = @; c < arr2len; c++)
arr2[cl = 4xc;

intll-arr3 =arril;

} |
int xarr3 arril;

/* or x/
int *arr3 = &arrl[0]:

-

Pointer/Array Interplay

17

* Array name alone can be

used as a pointer: arr vs. &arr[0]
void arrays() {

 Subscript notation can be used int c;

. . int arrl[] = {1, 2, 3};
with pointers int arr2[3];

int arr2len =
sizeof(arr2)/sizeof(int);

for (c = 0; c < arr2len; c++)
arr2[cl = 4xc;

intll-arr3 =arril;

} '

int *xarr3 = arrl;
int i = arr3[1];

-

Pointer Arithmetic

18|

Array indexing is actually a pointer operation!

arr[k] issyntactic sugarfor*(arr + k)

Implies that pointer arithmetic is on elements, not bytes:

ptr x Kisimplicitly
ptr = (k x sizeof(xptr)) bytes

Subtracting two pointers gives you a count of elements, not bytes:

(ptr + k) — ptr ==

(

Arrays with Functions

19

Passing an array to a function

* Arrays “decay” to pointers

(the function parameter gets the
address of the array)

* Array length in signature is ignored
« sizeof “doesn’t work”

Returning an array from a function
e (Cdoesn’t permit functions to have
arrays for return types
 (Canreturn a pointer instead

e Be careful not to return an
address of a local variable
(since it will be deallocated!)

/* equivalent function signatures %/
size t count(int numbers[]);

size_t count(int *xnumbers);

size t count(int numbers[5]);

{

/* always returns 8 x/
return sizeof(numbers);

intH—getArr()
int xgetArr();

STRINGS

[

Strings and String Literals in C

21

A string in C is a sequence of contiguous chars
e Terminated with null char ("\O') - not to be confused with the NULL pointer
* Double-quote syntax (e.g., "hello") to represent a string literal
e String literals can be used as special-case initializer lists
* No other language features for handling strings
* Delegate string handling to standard library functions

Examples
* 'a'is a char literal
e "abcd" is a string literal
* "a" is a string literal

How many
bytes?

(

Lemon Gelatin Dessert

22

char string[10] =
{IHI,IeI’I-LI’I-LI’IOI,Q};

(or, equivalently)

char string[10] = "Hello";

char xpc = string+1;

printf(”Y%s ", &string[1]);

pr1ntf("J°s'", pc);

string[0]

string[9]

-

Standard String Library

The header shall define the following:

NULL Null pointer constant.

. As described in

The following shall be declared as functions and may also be defined as
macros. Function prototypes shall be provided.

<stdio.h>
<string.h>
#include <assert.h>
#include <stdlib.h>
enum { LENGTH = 14 };
int main() {
char hl[] "Hello, ";
char wl] "world!";
char msg[LENGTH];
char xfound;
if(sizeof(msg) <= strlen(h) + strlen(w))
return EXIT_FAILURE;
strcpy(msg, h);
strcat(msg, w);
if(strcmp(msg),
"Hello, world!"))
return EXIT_FAILURE;
found = strstr(msg, ", ");
if(found — msg !'= 5)
return EXIT_FAILURE;
return EXIT_SUCCESS;

#include
#include

-

DIY (x2) - Available Later This Week

24

Info Schedule Assignments A2 Policies Canvas Ed

Assignment 2: A String Module and Client

Purpose

The purpose of this assignment is to help you learn (1) arrays and pointers in the C programming language,

