-

COS 217: Introduction to Programming Systems

A Taste of C

% PRINCETON UNIVERSITY

-

Agenda

Simple C Programs

e charcount (loops, standard input)
e 4-stage build process

e upper (character data, ctype library)
e portability concerns

Source code control with g1t

-

Agenda

Simple C Programs

e charcount (loops, standard input)
e 4-stage build process

e upper (character data, ctype library)
e portability concerns

Source code control with g1t

[
The “charcount” Program

Functionality:

 Read all characters from standard input stream
e Write to standard output stream the number of characters read

stdin stdout

L
%ne 1 charcount %??\
Line 2

-

The “charcount” Program

The program:

charcount.c

-

“charcount” Building and Running

/

“charcount” Building and Running

$ gcc2l7 charcount.c —-o charcount
S ./charcount

Line 1

Line 2

*D
N

What is this?
What is the effect?
What is printed?

-

“charcount” Building and Running

-
“charcount” Building and Running

-
“charcount” Building and Running

(

Running “charcount”

11

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of

int main (void)
{ int c;

int charCount = 0; ¢

c = getchar();

while (c '= EOF)

{ charCount++;

c = getchar();

}

printf ("$d\n", charCount) ;

return O;

chars in stdin. Return 0. */ Execution beginS at
main () function

No classes in the C
language.

-
Running “charcount”

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h> We allocate space for
/* Write to stdout the number of

chars in stdin. Return 0. */ C and CharCount
int main(void) in the stack section of

{ int c;
int cha’me\ memory
c = getchar();

while (c '= EOF)
{ charCount++;
c = getchar();
}
printf ("%d\n", charCount) ;
return O;

Why int
instead of char?

12

/

Running “charcount”

13

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of .
chars in stdin. Return 0. */ getchar() tries to read char

int main (void) from Stdin
{ int c;
« Success = returns that

int charCount = 0;
char value (within an int)

c = getchar();

while (c !'= EOF)]

{ charCount++; * Failure = returns EOF
c = getchar();

}
printf ("%d\n", charCount) ;

return 0;

}

EOF is a special value,
distinct from all possible chars

-

Running “charcount”

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>

/* Write to stdout the number of
chars in stdin. Return 0. */

int main (void)

{ int c; Assuming c # EOF,
c = getchar();
while (c !'= EOF) charCount

{ charCount++;
c = getchar();

}
printf ("%d\n", charCount) ;

return 0;

14

(

Running “charcount”

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>

/* Write to stdout the number of
chars in stdin. Return 0. */

int main (void)

{ 4int c;
int charCount = 0; We call getchar()
ch?lgefch?ﬂ;ém again and recheck
wnile c '= .
{ charCount++; |00p condition

c = getchar();

}
printf ("%d\n", charCount) ;

return 0;

15

-
Running “charcount”

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of
chars in stdin. Return 0. */
int main (void) « Eventually getchar()
{ intc; returns EOF
int charCount = 0; o]
c = getchar(); ° LOOp condition fails
while (c '= EOF) ° i
(charcountis: We C_aII prmtf()
c = getchar(); to write final
}
printf ("$d\n", charCount); CharCount
return O;
}

16|

-

Running “charcount”

17

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */ ° return Statement
:) i d _
S I () returns to calling

{ int c;
int charCount = 0; funCtiOn
I e return from main()
while (c '= EOF)
{ charCount++; terminates program

c = getchar();

}
printf ("%d\n", charCount) ;

return 0;

}

Normal execution = 0 or EXIT_SUCCESS
Abnormal execution = EXIT_FAILURE

-

“charcount” Build Process in Detail

18|

Question:

e Exactly what happens when you issue the command
gcc2l7 charcount.c —-o charcount

Answer: Four steps
e Preprocess
e Compile
* Assemble
e Link

(
“charcount” Build Process in Detail

The starting point

charcount.c

finclude <stdio.h> « C language
/* Write to stdout the number of R Missing declarations

chars in stdin. Return 0. */

int main (void) of getchar() and
{ int c; :
int charCount = 0; pr_lntf() o
c = getchar() ; » Missing definitions

while (c '= EOF)

{ charCount++; Of.getChar() and
c = getchar(); prlntf()

}

printf ("%d\n", charCount) ;

return 0;

19

-

Preprocessing “charcount”

20,

Command to preprocess:
e gcc2l7 -E charcount.c > charcount.i

Preprocessor functionality

e Removes comments
 Handles preprocessor directives

-

Preprocessing “charcount”

21

charcount.c

Preprocessor removes
comment (this is A1!)

-

Preprocessing “charcount”

22

charcount.c

Preprocessor replaces
#include <stdio.h>

with contents of
/usr/include/stdio.h

Preprocessor replaces
EOF with -1

(

Preprocessing “charcount”

23

The result

charcount.i

{

int getchar() ;
int printf(char *fmt, ...);

int main (void)

int c;
int charCount = 0;
c = getchar();
while (c '= -1)
{ charCount++;
c = getchar();
}
printf ("$d\n", charCount) ;
return O;

« C language

* Missing comments

» Missing preprocessor
directives

« Contains code from stdio.h:
declarations of getchar()
and printf()

» Missing definitions of
getchar() and printf()

e Contains value for
EOF

-

Compiling “charcount”

24

Command to compile:
e gcc2l7 -S charcount.i

Compiler functionality

e Translate from C to assembly language
e Use function declarations to check calls of getchar() and printf()

-

Compiling “charcount”

25|

charcount.i

int getchar() ;
int printf(char *fmt, ...);

int main (void)
{ int c;
int charCount = 0;
c = getchar();
while (c '= -1)
{ charCount++;
c = getchar();
}
printf ("$d\n", charCount) ;
return O;

« Compiler sees function
declarations

« So compiler has enough
information to check
subsequent calls of
getchar() and printf()

-

Compiling “charcount”

26

charcount.i

 Definition of main() function

« Compiler checks calls of
getchar() and printf() when
encountered

« Compiler translates to
assembly language

-

Compiling “charcount”

27

The result:
charcount.s

« Assembly language
« Missing definitions of
getchar() and printf()

-

Assembling “charcount”

28|

Command to assemble:
e gcc2l7 —-c charcount.s

Assembler functionality

e Translate from
assembly language to
machine language

-

Assembling

“charcount”

The result:

charcount.o

Machine language
version of the
program

No longer human
readable

« Machine language
« Missing definitions of
getchar() and printf()

-

Linking “charcount”

30|

Command to link:
e gcc2l7 charcount.o —-o charcount

Linker functionality

* Resolve references within the code

* Fetch machine language code from the standard C library
(/usr/lib/libc.a) to make the program complete

-

Linking “charcount”

31

The result:

charcount

Machine language
version of the
program

No longer human
readable

« Machine language
« Contains definitions of
getchar() and printf()

Complete! Executable!

32

7“* IClicker Question

Q: There are other ways to charcount - which is best?

A.

for (c=getchar(); c!'=EOF; c=getchar())
charCount++;

while ((c=getchar()) != EOF)

charCount++;
for (;;) c = getchar() ;
{ ¢ = getchar(); while (c!=EOF)
if (c == EOF) { charCount++;
D.
break; c =
charCount++; getchar () ;
} }

-

Agenda

33

Simple C Programs

e charcount (loops, standard input)
e 4-stage build process

* Uupper (character data, ctype library)
e portability concerns

Source code control with g1t

-
Example 2: “upper”

Functionality
e Read all chars from stdin
e Convert each lower-case alphabetic char to upper case
e Leave other kinds of chars alone
e Write result to stdout

stdin stdout
Does this work? w R e DOES THIS WORK?
It seems to work.J " uppe IT SEEMS TO WORK.

34

-

ASCI]

35|

American Standard Code for Information Interchange

Partial map

Note: Lower-case and
upper-case letters are 32 apart

-

“upper” Version 1

-

Character Literals

37

Examples

-

“upper” Version 2

-

ctype.h Functions

41

-

ctype.h Functions

-

“upper” Version 3

43|

-
|> IClicker Question

44

Q: Is the if statement really necessary?

A. Gee, | don’'t know.
Let me check
the man page
(again)!

-

ctype.h Functions

/ .
|> IClicker Question

46

Q: Is the if statement really necessary?

A.

Yes, necessary
for correctness.

Not necessary,
but I'd leave it in.

Not necessary,

and I'd get rid of it.

#include <stdio.h>
#include <ctype.h>
int main(void)
{ int c;
while ((c = getchar())
{ 1f (islower(c))
c = toupper(c) ;
putchar (c) ;
}

return 0O;

= EOF)

-

Agenda

a7

Simple C Programs

e charcount (loops, standard input)
e 4-stage build process

e upper (character data, ctype library)
e portability concerns

Source code control with g1t

-

Revision Control Systems

48|

Problems often faced by programmers:
e How do | work with source code on multiple computers?
e How do | work with others (e.g. a COS 217 partner) on the same program?
 What changes did my partner just make?

 If my partner and | make changes to different parts of a program,
how do we merge those changes?

 How can | try out one way of writing this function, and go back if it doesn’t work?
e Help! I've deleted my code! How do | get it back?

e Help! I've introduced a subtle bug that | can’t find. How can | see what I've
changed since the last working version?

All of these problems solved by specialized tools, such as g1t

-

Repository vs. Working Copy

49

WORKING COPY f\

git commit

* Represents single version
of the code

* Plain files (e.g, .c)

 Make a coherent set of
modifications, then
commit this version of code
to the repository

« Best practice: write a git checkout

meaningful commit message U

REPOSITORY

* Contains all checked-in
versions of the code

e Specialized format, located
in .git directory

e Can view commit history

e Can diff any versions

* Can check out any version,
by default the most recent
(known as HEAD)

-
Local vs. Remote Repositories

[\

LOCAL REPO _
eltpush I eEMOTE REPO
* Located in .git directory
* Only accessible from the * Located in the cloud,
current computer e.g. github.com
« Commit early, commit often - * Can clone to multiple
you can only go back to machines
versions you’ve committed git clone * Any clone can pull the
e Can push current state (i.e., git pull current state
complete checked-in history)
s to a remote repository U
/

-

COS 217 # github

51

We distribute assignment code through a github.com repo
 But you can’t push to our repo!

Need to create your own (private!) repo for each assignment
 Two methods in git primer handout

* One clone on armlab, to test and submit

* If developing on your own machine, another clone there:
be sure to commit and push to github, then pull on armlab

