

Model Compression --the Pruning Approaches

COS598D

Prof. Kai Li

Dr. Xiaoxiao Li

XI32@Princeton.edu

02/18/2020

Deep Learning on Mobiles

Phones

Glasses

Drones

Robots

Battery

App developers suffers from the model size!

Constrained!

Self Driving Cars

Source: http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf

The Problem of Running on Cloud

Intelligent but Inefficient

https://web.stanford.edu/class/ee380/Abstracts/160106-slides.pdf

Needs for Model Compression

Operation	Energy [pJ]	Relative Cost	
32 bit int ADD	0.1	1	
32 bit float ADD	0.9	9	
32 bit Register File	1	10	
32 bit int MULT	3.1	31	
32 bit float MULT	3.7	37	
32 bit SRAM Cache	5	50	
32 bit DRAM Memory	640	6400	

Energy table for 45nm CMOS process

Source: http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf

Deep Compression Can Achieve ...

Smaller Size

Compress Mobile App Size by 35x-50x

Accuracy

no loss of accuracy improved accuracy

Speedup make inference faster

Methods for Model Compression

• Deep Compression:

Compressing Deep Neural Networks with Pruning

- Trained Quantization
- □Huffman Coding
- □ Matrix Factorization
- * You can combine above methods
- AutoML for Model Compression and Acceleration on Mobile Devices

Pruning: Motivation

Age	Number of Co	onnections	Stage
at birth	50 Trillion		newly formed
1 year old	1000 Trillion		peak
10 year old	500 Trillion		pruned and stabilized

Table 1: The synapses pruning mechanism in human brain development

- Trillion of synapses are generated in the human brain during the first few months of birth.
- 1 year old, peaked at 1000 trillion
- Pruning begins to occur.
- 10 years old, a child has nearly 500 trillion synapses
- This 'pruning' mechanism removes redundant connections in the brain.

https://web.stanford.edu/class/ee380/Abstracts/160106-slides.pdf

Structured vs. Unstructured Pruning

- Structured pruning involves the selective removal of a larger part of the network such as a layer or a channel.
- Unstructured pruning find and remove the less salient connection in the model wherever they are. It does not consider any relationship between the pruned weights.

Local vs. Global Pruning

- Local pruning consists of removing a fixed percentage of units/connections from each layer by comparing in the layer.
- Global pruning pools all parameters together across layers and selects a global fraction of them to prune.

Pruning Rate and Sparsity

- *p*% is the Pruning Rate
- *P_m* is the Sparsity of the pruned network (mask)

• E.g. P_m = 25% when p% = 75% of weights are pruned. In this case, compression ratio =1/ P_m = 4.

Magnitude-based method: Iterative Pruning + Retraining

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.

Magnitude-based method: Iterative Pruning + Retraining (Experiment: Overall)

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	12X
LeNet-5 Ref	0.80%	-	431K	401/
LeNet-5 Pruned	0.77%	-	36K	12X
AlexNet Ref	42.78%	19.73%	61M	0.1
AlexNet Pruned	42.77%	19.67%	6.7M	9X
VGG-16 Ref	31.50%	11.32%	138M	401/
VGG-16 Pruned	31.34%	10.88%	10.3M	13X

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.

Lottery Ticket Hypothesis

Jonathan Frankle

MIT CSAIL jfrankle@csail.mit.edu

Michael Carbin MIT CSAIL mcarbin@csail.mit.edu

Motivation

 Pruning techniques can reduce parameter counts by 90% without harming accuracy

Motivation

https://ndey96.github.io/deep-learning-paper-club/slides/Lottery%20Ticket%20Hypothesis%20slides.pdf

The Lottery Ticket Hypothesis

A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations.

The Lottery Ticket Hypothesis

https://ndey96.github.io/deep-learning-paper-club/slides/Lottery%20Ticket%20Hypothesis%20slides.pdf

The Lottery Ticket Hypothesis

□If you want to win the lottery, just buy a lot of tickets and some will likely win

Buying a lot of tickets = having an overparameterized neural network for your task

□Winning the lottery = training a network with high accuracy

Winning ticket = pruned subnetwork which achieves high accuracy

Pruning Methods

- One-shot pruning:
 - 1. Randomly initialize a neural network $f(x; \theta_0)$, with initial parameters θ_0
 - 2. Train the network for *j* iterations, arriving at parameters θ_i
 - 3. Prune *p*% of the parameters in θ_i , creating a mask *m*
 - 4. Reset the remaining parameters to their value in θ_0 , creating the winning ticket $f(x; m \odot \theta_0)$.
- Iterative pruning:
 - 1. Randomly initialize a neural network $f(x; \theta_0)$, with initial parameters θ_0
 - 2. Train the netowork for *j* iterations, arriving at parameters θ_i
 - 3. Prune $p^{1/n}$ % of the parameters in θ_i , creating a mask *m*
 - 4. Reset the remaining parameters to their value in θ_0 , creating network $f(x; m \odot \theta_0)$
 - 5. Repeat *n* times from 2
 - 6. Final network is a winning ticket $f(x; m \odot \theta_0)$.

Experiments

- MLP for MNIST
- CNN for CIFAR10
- Ablation Study (dropout, weight decay, optimizer ...)

Network	Lenet Conv-2		Conv-4	Conv-6	Resnet-18	VGG-19	
				64, 64, pool	16, 3x[16, 16]	2x64 pool 2x128	
			64, 64, pool	128, 128, pool	3x[32, 32]	pool, 4x256, pool	
Convolutions		64, 64, pool	128, 128, pool	256, 256, pool	3x[64, 64]	4x512, pool, 4x512	
FC Layers	300, 100, 10	256, 256, 10	256, 256, 10	256, 256, 10	avg-pool, 10	avg-pool, 10	
All/Conv Weight.	s 266K	4.3M / 38K	2.4M / 260K	1.7M / 1.1M	274K / 270K	20.0M	
Iterations/Batch	50K / 60	20K / 60	25K / 60	30K / 60	30K / 128	112K / 64	
Optimizer	Adam 1.2e-3	Adam 2e-4	Adam 3e-4	Adam 3e-4	\leftarrow SGD 0.1-	0.01-0.001 Momentum 0.9 \rightarrow	
Pruning Rate	fc20%	conv10% fc20%	conv10% fc20%	conv15% fc20%	conv20% fc0%	conv20% fc0%	

Results – MLP (LeNet)

Figure 3: Test accuracy on Lenet (iterative pruning) as training proceeds. Each curve is the average of five trials. Labels are P_m —the fraction of weights remaining in the network after pruning. Error bars are the minimum and maximum of any trial.

- 51.3%, 21.12% is better than 100%, 3.6% is comparable with 100%
- Winning ticket is better than reinitialization

(b) Accuracy at end of training.

(c) Early-stopping iteration and accuracy for one-shot pruning.

Figure 4: Early-stopping iteration and accuracy of Lenet under one-shot and iterative pruning. Average of five trials; error bars for the minimum and maximum values. At iteration 50,000, training accuracy $\approx 100\%$ for $P_m \ge 2\%$ for iterative winning tickets (see Appendix D, Figure 12).

Figure 4: Early-stopping iteration and accuracy of Lenet under one-shot and iterative pruning. Average of five trials; error bars for the minimum and maximum values. At iteration 50,000, training accuracy $\approx 100\%$ for $P_m \ge 2\%$ for iterative winning tickets (see Appendix D, Figure 12).

Figure 4: Early-stopping iteration and accuracy of Lenet under one-shot and iterative pruning. Average of five trials; error bars for the minimum and maximum values. At iteration 50,000, training accuracy $\approx 100\%$ for $P_m \ge 2\%$ for iterative winning tickets (see Appendix D, Figure 12).

Results - Large CNN (ResNet-18)

Figure 8: Test accuracy (at 10K, 20K, and 30K iterations) of Resnet-18 when iteratively pruned.

• Use Global Pruning

Prune small weights in all layers collectively

- Need LR Warmup
 - 10k iterations

Limitations

- Only small datasets are tested
- Iterative pruning is computationally intensive (about 15x)
- Structured pruning and non-magnitude pruning methods
- Lack of study about the properties of initalizations
- The reason of why Ir warmup is necessary for deeper networks

SNIP: Single-Shot Network Pruning Based On Connection Sensitivity

Namhoon Lee, Thalaiyasingam Ajanthan & Philip H. S. Torr University of Oxford

Motivation

 Saliency based methods: selectively removing redundant parameters (or connections) in the neural network

Definition: Connection Sensitivity

We hope to prune the neural networks before training

□Denote $c_i \in \{0,1\}$ as the indicator of connection

$$\min_{\mathbf{c},\mathbf{w}} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) = \min_{\mathbf{c},\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{c} \odot \mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$$
s.t. $\mathbf{w} \in \mathbb{R}^m ,$
 $\mathbf{c} \in \{0,1\}^m, \quad \|\mathbf{c}\|_0 \le \kappa ,$

- By focusing on the difference in the objective function when c_j switches, we can determine the importance of the connection.
- Connection j is active -- $c_j = 1$; is pruned -- $c_j = 0$
- Precisely, the effect can be measured by

$$\Delta L_j(\mathbf{w}; \mathcal{D}) = L(\mathbf{1} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{1} - \mathbf{e}_j) \odot \mathbf{w}; \mathcal{D})$$

* e_j is the vector zeros everywhere except at the index j where it is one.

$$\begin{split} \min_{\mathbf{c},\mathbf{w}} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) &= \min_{\mathbf{c},\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{c} \odot \mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,\\ \text{s.t.} \quad \mathbf{w} \in \mathbb{R}^m ,\\ \mathbf{c} \in \{0,1\}^m, \quad \|\mathbf{c}\|_0 \leq \kappa , \end{split}$$

• Since c_j is binary, it cannot be differentiated and is difficult to optimize, we will actually solve the problem by relaxing it.

$$\Delta L_j(\mathbf{w}; \mathcal{D}) \approx g_j(\mathbf{w}; \mathcal{D}) = \left. \frac{\partial L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})}{\partial c_j} \right|_{\mathbf{c} = \mathbf{1}} = \lim_{\delta \to 0} \left. \frac{L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{c} - \delta \mathbf{e}_j) \odot \mathbf{w}; \mathcal{D})}{\delta} \right|_{\mathbf{c} = \mathbf{1}}$$

$$\Delta L_j(\mathbf{w}; \mathcal{D}) \approx g_j(\mathbf{w}; \mathcal{D}) = \left. \frac{\partial L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})}{\partial c_j} \right|_{\mathbf{c} = \mathbf{1}}$$

- The hypothesis [Connection Sensitivity] is that
 - If the gradient of g_j is large, it should be an important connection for the network and the task.

$$s_j = rac{|g_j(\mathbf{w}; \mathcal{D})|}{\sum_{k=1}^m |g_k(\mathbf{w}; \mathcal{D})|}$$

- Once the sensitivity is computed, only the top- κ connections are retained.

$$c_j = \mathbb{1}[s_j - \tilde{s}_\kappa \ge 0], \quad \forall j \in \{1 \dots m\}$$

SNIP Algorithm at Initialization

- 1. extract mini-batch data
- 2. calculate gradient for c
- 3. sort in descending order
- 4. pruning if less than κ_{th} score

Algorithm 1 SNIP: Single-shot Network Pruning based on Connection Sensitivity

Require: Loss function L, training dataset \mathcal{D} , sparsity level κ \triangleright Refer Equation 3 **Ensure:** $\|\mathbf{w}^*\|_0 \leq \kappa$ 1: $\mathbf{w} \leftarrow VarianceScalingInitialization$ ▶ Refer Section 4.2 2: $\mathcal{D}^b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}$ \triangleright Sample a mini-batch of training data 3: $s_j \leftarrow \frac{|g_j(\mathbf{w}; \mathcal{D}^b)|}{\sum_{k=1}^m |g_k(\mathbf{w}; \mathcal{D}^b)|}, \quad \forall j \in \{1 \dots m\}$ ▷ Connection sensitivity 4: $\tilde{\mathbf{s}} \leftarrow \text{SortDescending}(\mathbf{s})$ 5: $c_j \leftarrow \mathbb{1}[s_j - \tilde{s}_{\kappa} \geq \tilde{0}], \quad \forall j \in \{1 \dots m\}$ \triangleright Pruning: choose top- κ connections 6: $\mathbf{w}^* \leftarrow \arg\min_{\mathbf{w} \in \mathbb{R}^m} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})$ ▷ Regular training 7: $\mathbf{w}^* \leftarrow \mathbf{c} \odot \mathbf{w}^*$

Robustness for Network Architecture

- The initial values of the weights of a neural network are usually randomly initialized using a normal distribution
- If the initial weights have a fixed variance, the signal passing through each layer no longer guarantees to have the same variance
- To avoid this, it is recommended to use the variance scaling method for initialization (i.e. Xavier initialization).

Robustness for Mini-batch

- The results of the proposed method depend on the data contained in the mini-batch.
- SNIP determines the final pruning target after accumulating the importance of connections across multiple batches.

Experiments and Results

- Pruning LeNet at multiple sparsity levels
- Significantly sparse network with little loss of classification accuracy
- Generalization performance better than original network depending on sparsity level in some cases

Comparison with Baselines

- Comparison experiments with existing pruning algorithms
- There are 7 comparison methods.
- The proposed method gives good results in spite of working with single-shot

Method	Criterion	LeNet-	-300-100 err. (%)	LeNet	-5-Caffe err. (%)	Pretrain	# Prune	Additional hyperparam.	Augment objective	Arch. constraints
Ref.	_	_	1.7	_	0.9	_	_	_	_	_
LWC	Magnitude	91.7	1.6	91.7	0.8	\checkmark	many	\checkmark	X	\checkmark
DNS	Magnitude	98.2	2.0	99.1	0.9	\checkmark	many	\checkmark	×	\checkmark
LC	Magnitude	99.0	3.2	99.0	1.1	\checkmark	many	\checkmark	\checkmark	×
SWS	Bayesian	95.6	1.9	99.5	1.0	\checkmark	soft	\checkmark	\checkmark	×
SVD	Bayesian	98.5	1.9	99.6	0.8	\checkmark	soft	\checkmark	\checkmark	×
OBD	Hessian	92.0	2.0	92.0	2.7	\checkmark	many	\checkmark	×	×
L-OBS	Hessian	98.5	2.0	99.0	2.1	\checkmark	many	\checkmark	×	\checkmark
SNIP (ours)	Connection sensitivity	$95.0 \\ 98.0$	1.6 2.4	$98.0 \\ 99.0$	0.8 1.1	×	1	×	×	x 40

Summary

https://towardsdatascience.com/the-lottery-ticket-hypothesis-a-survey-d1f0f62f8884

Summary

- Neural Networks Pruning is essential for AI deployment on mobiles.
- We studied the basic magnitude-based pruning method, using pruning to find 'winning ticket' in the densely connected neural networks and SNIP – pruning at initialization.
- More recent works improve the pruning methods, thus achieve better sparsity, efficiency and accuracy trade-off.

- Submit Warmup
- Submit short paper review (ddl next Tuesday)
- Choose one model compression assignment: Assignment 1-Pruning or Assignment 2 - Binarized NN