
IPS: Unified Profile Management for Ubiquitous
Online Recommendations

Rui Shi, Yang Liu, Jianjun Chen, Xuan Zou, Yanbin Chen, Minghua Fan, Zhihao Cai
Guanghui Zhang, Zhiwen Li, Yuming Liang

ByteDance, Inc.
ips-paper@bytedance.com

Abstract—ByteDance offers several massively popular products
such as TikTok, Jinri Toutiao and Douyin for creating, sharing
and discovering a variety of content, in which recommendation
plays an indispensable role for helping billions of users to interact
with highly personalized content. The personalized experience in
products largely comes from the ability of sophisticated machine
learning models to make accurate predictions based on users’
interests and one key component in such systems is the user
profile service.

In this paper, we introduce Instance Profile Service (IPS),
a large scale distributed system for managing unstructured
profile data as well as serving various feature computations at
ByteDance. Different products leverage IPS in many different
ways and place various demands on the system, in terms of
complex computation logic and latency requirements. One major
challenge in the design of a large scale user profile system is how
to strike the right balance among efficiency, scalability, reliability
and versatility. With deliberated choices made on its design and
implementation, we demonstrate IPS can provide a simple yet
flexible solution to all these products while meeting the targeted
high availability and performance goals. At ByteDance, IPS has
successfully replaced many legacy profile systems and runs on
thousands of machines. One of our largest production instances
can process a hundred million feature queries and tens of millions
writes per second.

Index Terms—Feature Management, Feature Serving, Recom-
mendation System

I. INTRODUCTION

In recent years, personalized recommendations have become
vital in providing relevant content, such as news feed, in con-
sumer oriented internet services. A typical recommendation
process includes the following two stages:

• Retrieve from multiple content repositories to get a can-
didate set of contents based on a user’s interests.

• Rank the candidate set above based on relevance scores
predicted by machine learning models then return the top
K most relevant results to the user.

As matching user interests to content items is the core of
the above process, the profile service has played a key role in
a recommendation system. We consider a good profile service
has the following requirements:

a) Capture both long and short term interests: When
making recommendations to users, a news feed should not
merely show recent hot topics, but also understand users’ long-
term interests and hobbies.

(a) TikTok (b) Jinri Toutiao (c) Douyin

Fig. 1. Screenshots of ByteDance’s most popular products with hundreds of
millions Daily Active Users (DAU) each.

Data Source

(Message Queue)

App log or Server log

Real Time Process

(Flink Streaming Job)

Batch Process

(Hadoop batch job)

Raw Data

Minute-wise

calculations

Daily

calculations

Short Term

Profile
Model

Training

Model

Serving

update

patch

replace

Job Mode

Long Term

Profile

Fig. 2. Short and long term profile services as a lambda architecture.

b) Flexible in feature computation: Features used for
model training and prediction should be readily computed in
service to various feature engineering needs.

ByteDance offers several products for creating, sharing and
discovering a variety of contents, in which recommendation
plays an indispensable role for helping billions of users
to interact with highly personalized contents from an ever-
changing corpus. The personalized experience in products
such as TikTok [1], Jinri Toutiao (a.k.a Today’s Headline) [2]
and Douyin (the Chinese version of TikTok) as shown in
Figure 1 largely comes from the ability of sophisticated
machine learning models to make accurate predictions based
on users’ interests. Over the last two years, we have designed
and implemented a distributed system named Instance Profile
Service (IPS) for managing profile data, which serves as one
major source of features fed to model training and inference
at ByteDance.

Fig. 3. A simplified model structure for a wide and deep recommendation model.

In the early practice of ByteDance’s recommendation sys-
tem, the user profile service was divided into two independent
ones: Long Term Profile and Short Term Profile, depicted as a
Lambda architecture [3] in Figure 2:

• Long Term Profile focuses on the long term behaviors or
profiles of users, e.g. the topmost content category clicked
by a user over the last year. The actual implementation
keeps each user’s profile in a key-value store mapping
from the profile ID to the top features that user clicked or
viewed during the entire history. Due to the large amount
of historical data that needs to be processed, the Long
Term Profile can not be updated in real time. A daily
offline batch job processes the previous day’s logs then
updates the long term profile with the most recent data.

• Short Term Profile focuses on the short-term interests of
users. Unlike the long term profile, only the content IDs
of the user’s most recent clicks are stored. While serving
a request, the list of content IDs clicked by the user are
used to retrieve the detailed categorical information from
a content data store. This step is simply a key to ID
list mapping, which relies on the upstream service to
construct the input features for model scoring.

However, with the rapid evolution of the real-time rec-
ommendation system as well as the massive growth in data
volume, we found some major problems in this early practice.
Firstly, every product needs to maintain two separate profile
services which serve similar purposes. In addition, each profile
service has its own dependencies to compute features, which
further complicates the operations in production. Secondly,
engineers of each product need to implement customized
logic to retrieve additional information then compute the input
features for machine learning models, making it hard to re-
use the feature computation logic across multiple products.
Lastly, as only limited types (long and short) of time window
are supported, the existing system is not able to flexibly
control the time span over the history data. As a result, it
is highly non-trivial to experiment with new features such
as the aggregated statistics of user actions over last week or
last 30 days. To address the above problems, the design of
IPS aims to provide a general service to replace the various
profile services within the company, which reduces the overall
maintenance overhead, increase the engineering flexibility and

improves resource efficiency.
As for recommendation systems, wide and deep models [4]–

[6] are proven to be effective in recommendation systems. At
ByteDance, we employ different extensions of such models
as shown in 3 to improve user engagements. One important
characteristic of the models is extensive use of sparse features
and embeddings [7]–[9] together with deep neural networks.
The number of features are often huge for the categorical
variables. As an example, for video-side features, the feature
size is the total number of videos in our database, which can
range up to tens of billions in a single model. With the help of
IPS, we can extract thousands of features for a single request,
assemble them for serving and flush them into training data
in parallel to avoid training-serving skew. In the following,
we provide some insights into how different products are
leveraging IPS by delving into more details for two major
use cases:

c) Content Feeds: We heavily rely on IPS as the hub for
feature extraction. One main advantage of IPS is its ability
to capture both short and long term features. Short term
features allow the app to quickly promote the trendy content.
For instance, most models rely on the number of clicks and
the click through rate (CTR) as input features, so quickly
updated values are crucial for recommending contents like
breaking news. The long term features enable the app to better
understand the latent characteristics of articles and users. For
example, if a user started reading about cooking but then
switched to hiking, the model may recommend some trail
cooking recipes based on this.

d) Advertising: While IPS in advertising shares similar
benefits with content feeds, it also has some unique chal-
lenges. Flow control is very important in online advertising to
maximize the potential conversions and profits. IPS is able to
capture features like impressions and conversions responsively,
which delivers a smooth targeting of ads over a certain period
of time. The price is also critical since our models rely on
it heavily to determine the advertisement’s value. As today’s
online advertising is often auction based, the bidding price is
very sensitive and volatile. IPS is able to update the bidding
prices in a timely manner to help delivering the most valuable
ads, which is crucial to our business.

In summary, our key contributions are as follows:

• We introduce a novel yet general approach to designing
profile services that power feature computations for large
scale online recommendation systems.

• We describe a time-series based data model that supports
complex feature computations such as muti-dimensional
top K query and user defined aggregate functions over
arbitrary time windows, which allows sufficient flexibility
for feature engineering.

• We present a highly scalable and geo-replicated architec-
ture that is resilient to various data center and network
failures.

• We describe key techniques implemented to sustain tens
of millions queries per second, achieving high update
throughput, data freshness and low query latency in an
integrated manner.

• We describe some implementation aspects of this ap-
proach on a large scale, our experience to resolve certain
challenges, its limitations as well as trade-offs made to
meet the targeted high availability and performance goals.

The rest of paper is organized as follows: Section II de-
scribes the data model of IPS in more detail and provides
an overview of the APIs; Section III describes the overall
architecture of the system as well as implementations of its key
components along with optimizations to resolve challenges we
faced in production; in Section IV, we provide some empirical
measurements of IPS’ scale and performance; Finally, Sec-
tion VI describes the related work, and Section VII concludes
our work.

II. DATA MODEL AND APIS

In this section, we describe IPS’ data model and APIs using
motivating examples.

A. Data Model

IPS, as a generic profile service, is modeled after time,
category, action and feature stats. This design can effectively
characterize a user’s interests over time and also be used to
store various application specific data with sufficient flexibility,
which provides enough expressiveness to meet most applica-
tion needs at ByteDance.

Let’s illustrate using a motivating example: after a user
named Alice was recommended some cool contents by a
mobile app, she watched a few short videos in it. She ‘liked’
and ‘commented’ on one video about Los Angeles Lakers
then re-shared this video to her friends. A few days later,
she viewed a couple of videos about Golden State Warriors
and ‘liked’ some of them. These interest related signals such as
liked basketball teams are aggregated and anonymously stored
in IPS with rigorous privacy controls as Alice continues to use
the mobile app.

Our recommendation engine would query the aggregated
interest related stats every time it is suggesting new contents
to a user. The stored stats in IPS are used to create features
such as the CTR of basketball related contents in the last 30
days, which are fed into a machine learning model to make
recommendations to the user.

SELECT
f e a t u r e ,

SUM(l i k e) AS t o t a l _ l i k e s
FROM

u s e r _ p r o f i l e _ t a b l e
WHERE

u i d = " A l i c e " AND
timestamp > TEN_DAYS_AGO AND
s l o t = " S p o r t s " AND t y p e = " B a s k e t b a l l "

GROUP BY f e a t u r e
ORDER BY t o t a l _ l i k e s DESC
LIMIT 1 ;

Listing 1. A SQL example to illustrate feature queries computed by IPS.

Profile Table: day_level_interest

Slice: Now to five days ago

Slot: Sports

Type: Basketball

Feature Stat:

ID: Golden State Warriors

Count: like(2)

Slice: five days ago to ten days ago

Slot: Sports

Type: Basketball

Feature Stat:

ID: Log Angeles Lakers

Count: like(1), comment(1), share(1)

PK: Profile ID: Alice

Fig. 4. IPS data model.

To facilitate understanding, we layout the above example’s
data in I, where Alice’s two actions correspond to two rows as
part of her profile. As an example, a typical pattern computed
by IPS can be expressed as a traditional SQL query in
Listing 1, which returns Alice’s most favorite basketball team
over the last 10 days as a feature, which is Golden State
Warriors. This is one of the most common compute patterns
that IPS deals with and the key challenge is to design an
efficient architecture that can scale to serve billions of users
online.

We explain in the following how the above motivating
example is represented in IPS data model, as illustrated in
Figure 4. Alice’s profile data, along with other users, are kept
in a Profile Table in which each profile is keyed by a unique
ID. A user’s entire profile is recorded in a time-serial list
of Slices, each of which represents a piece of profile history
within a non-overlapping time range. Features, typically with
a unique feature ID, are categorized into various Slots and
Types (e.g. Los Angeles Lakers could be a feature, which
belongs to Sports Slot and Basketball Type) and associated
with a vector of counts (e.g. number of clicks, shares and
comments about Lakers). Based on this data model, IPS
can readily answer feature queries, such as "Alice’s topmost
liked feature in Sports and Basketball category over the last
10 days?", which is "Golden State Warriors". Note that the
examples above shows actual textual information is purely for
illustration purpose. In reality, all user profile data are stored
as hashed literals along with strict privacy and access controls.

Recommendation systems relying on IPS often retrieve 10s
to 100s features every time they render personalized contents
to a user. In each request, feature counts are collected from
different categories and aggregated in varied window sizes.
Due to the real-time nature of online recommendation, the
computed features can not be cached effectively but have to
be computed every time.

TABLE I
AN ILLUSTRATION OF OUR MOTIVATING EXAMPLE IN A DATABASE TABLE.

uid timestamp feature slot type like comment share
Alice Ten days ago Los Angeles Lakers Sports Baketball 1 1 1
Alice Two days ago Golden State Warriors Sports Baketball 2 0 0

B. APIs
IPS provides APIs to write, read and manage profile data.

The write operations are append or insert without conduct-
ing in-place update while the read operations are primarily
focused on efficiently retrieving relevant data according to the
conditions specified by the application layer. The management
operations are mostly internal for online operations so we omit
them for brevity.

1) Write APIs: As described earlier in this section, the
conceptual data model of IPS is a time-serial linked list of
multi-level hash tables, in which profile data are stored in a
strict time order. The most commonly used write operations
are:

• add_profile(table, profile_id, timestamp, slot, type,
feature_id, feature_counts)

• add_profiles(table, profile_id, timestamp, slot, type,
feature_id*, feature_counts*)

The table indicates the IPS table the request is written to.
The timestamp is used to determine where the profile data
should be placed in the time-serial list of the entire profile. If
the timestamp is greater than the most recent data of the current
profile, a new Slice will be placed at the beginning of the list.
The slot and type are used as indexes to locate the actual
feature data: feature_id and its corresponding feature_counts.
The second interface is the batched version of the first one to
improve the write efficiency.

2) Read APIs: The read interfaces of IPS retrieve relevant
profile data with additional sorting or filtering operations based
on application specified criterion. Consider the example in
Figure 4, in order to find Alice’s favorite sports teams in
the last ten days, an application needs to query IPS for the
sports slot and find the top 1 team ‘liked’ by her. The query
processing can be roughly divided into two steps: First, locates
the Slices needed for the computation based on the given time
range; Second, performs a multi-path merge and aggregation
over all features under the ‘Sports’ slot followed by a top K
search to return the final results.

IPS supports common query operations as follows:
• get_profile_topK(table, profile_id, slot, type,

time_range, sort_type, k) returns the top K features
sorted by the specified sort_type over the specified time
range, where the sort_type includes: sort by a certain
attribute count (e.g. ’likes’, ’comments’), timestamp or
feature id etc.

• get_profile_filter(table, profile_id, slot, type,
time_range, filter_type) returns the features filtered by
a certain type over the specified time range.

• get_profile_decay(table, profile_id, slot, type,
time_range, decay_function, decay_factor) returns the

Flink Job

Register

Service

Query

Service

RPC: UID Consistency Hash

User Application Layer

Partition 01 Partition 02 Partition 03 Partition 0n

Flush & Load

Compute Cache Layer

Persistent Storage Layer

Model Training Predict Service

IPS IPS IPS IPS IPS

Kubernetes Cluster

Job ModeSpark Job

Fig. 5. High-level architecture of IPS

features over the specified time range after applying the
specified decay_function to the feature counts with the
decay_factor at different time scale. This API is most
useful when an application wants to favor the most
recent profile data over the old ones.

In all APIs above, a time range has to be specified, which is
used to determine the Slices that fall into the range. There are
three kinds of time ranges supported: CURRENT, RELATIVE,
ABSOLUTE. The CURRENT time range denotes the queried
window should end at the current moment. The RELATIVE
time range denotes the queried window should start from when
a most recent action happens. The ABSOLUTE time range is
used to specify arbitrary time window in history. The slot and
type are required to narrow down the search space of feature
counts.

Once the Slices of interest are collected, IPS performs a
multi-way merge and aggregation over all feature counts. As
part of this process, the pre-configured aggregate function and
the specified decay function may be applied. A final sort is
then conducted on the aggregated feature counts according to
the specified attributes (e.g. sort by thumb-ups, by shares or by
clicks). It is a common practice for an upstream application to
use different combinations of filtering, sorting and decaying to
produce features used for various recommendation scenarios.

III. SYSTEM ARCHITECTURE

Figure 5 shows the high-level architecture of IPS, which
can be divided into three layers: the user application layer, the
compute cache layer, and the persistent storage layer. The top
layer includes various applications such as the Flink streaming
processing jobs that are responsible for ingesting data at real
time, the Spark batch processing jobs that are responsible
for importing data in bulk mode, the model training jobs as
well as the ranking service that extracts features from IPS
for online training and prediction. The middle layer is the

core compute and cache layer of IPS, which conducts all
the feature computations. The upstream user applications rely
on a unified IPS client to communicate with this layer. IPS
uses an internal C++ Thrift [10] based RPC framework for
communications between different layers. We use ID-based
Consistent Hash for load balancing and Consul for service
discovery. IPS instances register the IP and port with Consul
when the service is ready and the upstream clients refresh the
IPS instance list from Consul periodically. Each IPS instance
serves a fraction of the data in the cluster, which allows the
system to scale horizontally. As the cache layer resides in
memory, we rely on a high performance distributed key-value
store like HBase to provide data durability in case of fatal
failures.

A. Data Ingestion

Instance data is the basic data source for model training in
machine learning, which also serves as the major data source
for IPS. Instance data include three input sources: impression,
action and features from different data streams. The impression
data represents the actual presentation of an article or video to
the user, which includes the server impression and the client
impression. The action data represents the actions performed
by users such as ‘like’ or ‘comment’. The feature data comes
from the back end servers, which include all kinds of signals
used for recommendation and ranking. Various Flink streaming
jobs are used to join the data from the above streams to form
the instance data as training samples. The joined instance is
then written to the corresponding Kafka topics for downstream
consumption. Finally, one Flink Streaming job with user de-
fined extraction logic consumes the Instance data from Kafka
and ingests into the corresponding IPS instances. The end-
to-end latency between a user’s action and the data being
available in IPS in a normal data flow path is usually within
a minute.

B. In-memory Data Structures

The in-memory data structures employed in IPS are key
to IPS’s flexible feature extraction and high performance. In
general, the internal storage structure of the compute cache
layer in IPS can be thought as a time-serial list embedded
with multi-layer hash maps. The time-serial list allows flexible
time window query and the embedded multi-layer hash maps
support fast feature querying. Figure 6 shows the memory
data structure in the compute cache layer, which includes four
major data structures: Profile Table, Slice, Instance Set and
Indexed Feature Stat. Those concepts are briefly introduced
in Section II and below we explain them in more technical
details:

• Profile Table is the concept for logically organizing
different profile data in IPS. Data in different tables are
stored separately. In each table, profiles are uniquely
identified by a 64-bit unsigned integer (Profile ID). The
basic data structure of Profile Table is an unordered map
in which the key is the profile ID and the value is a Profile
Data, which contains a list of Slice.

• Slice stores users’ feature behavior in a series of time
intervals. Each Slice represents a snapshot of the user
actions over a period of time and a list of Slice constitutes
the entire profile history. Each profile data instance
written to IPS has an associated timestamp, which is
used to determine the actual position to place in a slice.
The slices are automatically managed as part of the write
process and there are background threads to continuously
merge the consecutive slices into ones of longer time
ranges as discussed in III-D. The basic data structure of
Slice is an unordered_map in which the key is a slot ID
and the value is an Instance Set.

• Instance Set is another map structure to represent a set
of user behaviors across multiple action type defined
by upstream applications. The basic data structure of
Instance Set is an unordered_map in which the key is
an action_type ID and the value is an Indexed Feature
Stat.

• Indexed Feature Stat represents the feature statistics in the
format of either an int64 pair or a list to satisfy various
needs. To support efficient multi-way feature merging and
sorting, we also add an fid_index that tracks the index of
the current feature in the entire user feature list.

C. Cache Management

In Figure 6, GCache is a write back cache that consists
of two lists: the LRU List and the Dirty List. A set of swap
threads periodically check the LRU List in GCache and swap
out old data from memory based on the LRU strategy. In the
mean time, another set of flush threads periodically check the
Dirty List for the updated or newly written data in GCache
then persist them into the key-value store for data persistence.

The effectiveness of the cache management directly affects
the overall performance of IPS. As upstream query load
getting more intensive, the swap and flush activities may cause
periodic fluctuations in CPU load and processing latency,
especially in a virtual machine environment. To solve this
problem, IPS shards the LRU cache into multiple partitions
hashed by the profile ID, which can effectively reduce the
lock contention among the swap threads as shown in Figure 7.
When the swap threads find that the memory usage exceeds
a pre-defined threshold, they will swap out cached entries
starting from the largest shard in the LRU cache until the
memory usage falls below the threshold. In addition, a swap
thread first attempts accessing the last entry with try_lock.
If the try_lock fails, the entry must be processed by another
thread. Instead of blocking, the current swap thread simply
proceeds to process the next entry up in the list, which can
further reduce the lock contention.

In figure 9, the Dirty List is also divided into multiple shards
like the LRU cache except the number of flush threads must be
a multiple of total shards, which is to ensure that every dirty
list shard is assigned at least one flush thread and minimize
the interference between them.

Profile Table

Profile ID Slice List

UID 1 Slice 1 -> …… -> Slice 3

UID 2 Slice 1 -> ……

unordered_map<profile_id, slice_list>

Slice

Slot ID InstanceSet

Slot 1 InstanceSet 1

Slot 2 InstanceSet 2

unordered_map<slot_id, InstanceSet>

InstanceSet

Type ID vector of IndexedFeatureStat

Type 1 [IndexedFeatureStat, ……]

Type 2 [IndexedFeatureStat, ……]

unordered_map<type_id, vector<IndexedFeatureStat>>

IndexedFeatureStat

Feature ID

Feature Index

Pair: V1, V2

Count List: vector<int64>

Global Cache

LRU

List
Double Linked List of shard_ptr for Slice
shard_ptr<slice> <-> shard_ptr<slice> <-> ……

Dirty

List
Double Linked List of shard_ptr for Slice
shard_ptr<slice> <-> shard_ptr<slice> <-> …… KV Store

Fig. 6. IPS in-memory data structures

……

All LRU Sharding List In Memory

Sharding 00

Used: 55%

Sharding 01

Used: 75%

Sharding 02

Used: 85%

Sharding 13

Used: 60%

Sharding 14

Used: 50%

Sharding 15

Used: 80%

Swap

Thread 00
……

Swap The Largest LRU Shard

Swap

Thread 01

Swap

Thread 02

Swap

Thread 03

Fig. 7. Sharded LRU list in memory

One LRU Sharding List

Cache

Entry

Latest Used Oldest Used

1: try_lock the

oldest entry

Swap

Thread x

2. if the oldest entry try_lock

failed, then try the second one

Cache

Entry

Cache

Entry

Cache

Entry

Cache

Entry

Cache

Entry

Cache

Entry

Fig. 8. Access cache entry with try_lock

D. Compact and Truncate

The explosive growth may lead to dramatic profile expan-
sion. In the practice of online recommendations, we found that
the user profile has two characteristics:

• Temporal: e.g. in the recommendation scenario, the user
behaviors within a week usually have a much higher
significance than those happened a month ago.

• Long-tail: e.g. among the massive number of user be-
haviors, there are a large number of low-value long-tail
features.

IPS relies on the compaction and elimination mechanisms to
prevent profile data explosion while keeping the desired data
quality. Note that one Profile Data consists of a linked list
of Slice. To prevent the size of this linked list from growing
too long, the compaction process provides two alternative
methods: Compact and Truncate.

a) Compact: Compaction merges multiple continuous
slices into one based on a pre-configured time window. When
merging adjacent slices, the feature count of the same FID can

……

Dirty Sharding 00

size: 55

Dirty Sharding 01

size: 75

Dirty Sharding 14

size: 50

Dirty Sharding 15

size: 80

Flush

Thread 00

Flush

Thread 01
……

Flush

Thread 14

Flush

Thread 15

Each Dirty Shard has at least

one flush thread to work with

All Dirty Sharding List In Memory

Fig. 9. Sharded dirty list in memory

slice1

time_dimension 10m: [10m, 1h]

[12m,14m)

[12m,18m)

[18m,30m) [30m,33m)[33m,36m) [36m,41m)

5m 10m 15m 25m 30m 35m 40m20m

slice2

5m 10m 15m 25m 30m 35m 40m20m

slice3 slice4 slice5 slice6

[14m,18m)

slice1 slice2 slice3

[18m,30m) [30m,41m)

Fig. 10. Profile compaction

be aggregated according to the pre-configured reduce function
(e.g. SUM, MAX). Listing 2 shows an example denoting
Slice data from 10 minutes to 1 hour to be merged into one
aggregated slice every 10 minutes. In Figure 10, we can see
how a Slice list of original size six are merged into a new list
of size three according to the configuration.

" t i m e _ d i m e n s i o n " : {
" 10m" : [" 10m" , " 1h "]

}

Listing 2. IPS demo time-dimension config

Compaction does not drop any data but merges several
consecutive slices into one. Although this process may reduce
time precision, the recommendation practice shows that it can
significantly reduce the profile data size without compromising
the effectiveness of recommendation. List 3 shows a compact
configuration widely used at the company.

b) Truncate: In some recommendation scenarios, models
and algorithms do not care about user behavior after certain
period of time (e.g. user’s behaviors a month ago), or just
need the user’s most recent behaviors (e.g. user’s last 100

" t i m e _ d i m e n s i o n " : {
" 1 s " : [" 0 s " , " 1m"] ,
" 1m" : [" 1m" , " 1h "] ,
" 1h " : [" 1h " , " 24h "] ,
" 1d " : [" 24h " , " 30d "] ,
" 30d " : [" 30d " , " 365d "]

}

Listing 3. IPS time-dimension config example

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

min_slice_count_after_truncate: 5

Fig. 11. Profile truncation example

clicks). For these purpose, IPS uses the Truncate process
to remove the old data with low value. Depending on the
upstream requirements, IPS supports truncate by time range
and slice count, e.g. Figure 11 shows only the first five slices
are preserved in the truncate by count scenario.

Profile data may accumulate in another way under the
Compact method. Each Slice is a snapshot of the user’s feature
behaviors over a period of time. With the continuous slices
in the specified time range merged, the long-tail feature data
in each slice still grows over time. These long-tail features
generally have low counts and little impact on recommenda-
tions, but they can consume large amount of memory. As IPS
needs to sort all features by its count during query processing,
excessive long-tail feature data may consume a lot of compute
resources.

To control the amount of the low quality long-tail data, IPS
uses the Shrink process to clean up the long-tail data while
keep the high quality features. In the online recommendation
practice, the Shrink process is designed based on the following
principles:

• Data Freshness: Even if a feature has a low count, its
quality is high if it occurred relatively recently. Although
the current behavior count of one feature is low, it may
gets greater over a longer period of time with subsequent
actions. Therefore, Shrink should choose old data over
recent data.

• Multi-dimensional Sorting: It is a common practice to
determine the importance of different features by their
counts, which vary significantly. For instance, IPS may
store counts of various actions such as clicks, shares, likes
and comments with different significance. The Shrink
process needs to take into account the significance of
each action by implementing multi-dimensional sorting.

• Balance between short term and long term interests: For
instance, it may not be a good strategy to always favor
the most recent data because the historical data may
represent a user’s long-term interests. In this case, simply
eliminating the old data may cause bad experiences in
recommendation. Hence, balance in time and categories
should also be considered in feature elimination.

One important step in the Shrink process is to determine
the number of features that need to be retained. As different
recommendation models may have different requirements, IPS
provides a configurable way to guide the number of features
that need to be retained internally. Listing 4 shows an example
configuration for Shrink method used in production in which
the number of features retained in each slot are specified.

" s l o t " : {
" 140 " : 500 ,
" 141 " : 2000 ,
" 143 " : 1500

}

Listing 4. IPS Shrink config example

Like the Garbage Collection in JVM, while data compaction
can effectively reduce the profile data volume and processing
latency, it also introduces some additional overhead. As the
compaction of a profile is triggered by an incoming request
and consumes non-trivial CPU time, the overall query perfor-
mance may be adversely affected. To address this problem,
we have been fine-tuning various compaction strategies to
strike a balance between resource consumption and system
performance. For instance, we migrate the compaction out of
the main serving path and delegate them to run asynchronously
in a dedicated thread pool with capped parallelism. In addition,
as a full compaction is usually not necessary for most of
profiles, we implemented a few strategies to determine whether
to conduct a full compaction versus a partial one based on the
actual load. By these means, we are able to control the CPU
time spent on compaction and leave more resources to the
query serving during the peak time.

Based on our production metrics, the average length of
a slice list is 62 and the average slice data size is around
730 bytes, which means each user profile uses about 45KB
memory and it remains fairly stable. Suppose each slice
contains 5-minute worth of data, if no compact and truncate in
place, a user’s profile may grow to 76MB after a year, which
is clearly not economically practical. With the help of these
mechanisms, we are able to control the total memory cost of
IPS clusters while ensuring the expected feature data quality
(as proved by extensive A/B tests), which makes it possible to
store more profiles in memory, obtain higher cache hit ratio
and reduce serving latency with the same amount of resources.

E. Persistent Storage

As discussed above, the flush threads periodically flush out
the updated profile data in the dirty list to the underlying
key-value store. In the case of a cache miss, the requested
data can be loaded into the cache from the persistent storage.
IPS currently adopts a simple model: the key in the key-
value structure is the profile ID while the value is a binary
representation of the user’s entire profile data. IPS now only
relies on simple APIs like set and get to store and retrieve a
user’s profile as a whole.

As shown in Figure 12, IPS serializes the in-memory user
profile data into a Protocol Buffer [11] format that encodes
the hierarchy of feature data. In addition, IPS compresses the

Slice List PB

Serialize

PB Data Snappy

Compress

Slice List PB

Deserialize

PB Data Snappy

Decompress

SET

GET

Convert

Slice List PB

Convert

Slice List

flush

load

Profile Data

Slice 1

……

Slice N

Net

IO

KV Store

Fig. 12. Bulk profile persistence mode

Slice 1

StartTS_1 - EndTS_1

Meta Data (as a key-value with generation)

Slice 1 Data

Slice 2 Data

Slice N Data

Slice 2

StartTS_2 - EndTS_2

……

Slice N

StartTS_N - EndTS_N

……

Profile ID

partition hash key

Fig. 13. Slice meta structure

serialized data using Snappy [12] to reduce the network traffic
and storage space. Based on our experience, a single user’s
profile usually takes less than 40KB in space after serialization
and compression.

Occasionally, very large values may be generated due to
either large test profile data or intensive usages. With excessive
profile value size, IPS has to spend more CPU time for
both serialization and deserialization, which limits the amount
of cached profiles and sometimes exhausts the network IO
bandwidth of the persistent storage. To solve this problem,
IPS splits profile value and adjusts the granularity of data
flushing and reloading from the entire profile to slice level.
As shown in Figure 13, IPS adds a new layer of slice meta
data on top of the overall profile data, which records all slice
list meta-information inside a profile. In this way, IPS splits
a large profile value into a meta data value and a series of
slice values. Typically, a single slice data is small and can be
controlled by the time interval configuration in compaction.
In this scheme, it is critical to ensure consistency between
the stored metadata and the corresponding slice values as the
updates to them may not be performed atomically.

Figure 14 shows how IPS relies on the data version to
control the sequence of operations so as to ensure consistency.
Each xset operation to the underlying storage generates a
unique version for the value written. In order to perform an
operation, each xget or subsequent xset operation must hold
a valid version. If the version held in the operation is older
than the current version in the key-value store, it means that
the value is not up to date and needs to be reloaded before
further operations. The slice meta data can only be updated
until the relevant slice data is successfully updated to ensure
the correctness and consistency.

F. Read-Write Isolation

For online applications, read performance is usually more
important than the write performance. In the presence of

Slice PB

Serialize

PB Data Snappy

Compress

Slice PB

Deserialize

PB Data Snappy

Decompress

XSET

XGET

Convert

Slice PB

Convert

Slice

flush

load

Net

IO

KV Store

Profile Data

Profile Meta

Slice 1

……

Slice N

Load & Update Profile Meta Darta

Fig. 14. Fine-grained profile persistence mode

real-time data ingestion, we need to ensure that the query
performance is not adversely affected. To address this problem,
IPS isolates the read and write traffic by keeping a separate
write table from the main table. The input data is first added to
a write-only table and periodically merged into the main table
by applying the configured aggregate functions every a few
seconds. This approach significantly reduces the contention
on the main table therefore greatly improves the overall
stability of query operations. Note that this approach requires
an extra portion of memory for the write table and delays
the data visibility slightly, but this trade-off is worthwhile
since it achieves significant performance gains. To remedy the
potential issues introduced by the isolation (e.g. lower cache
hit ratio or more frequent swaps), IPS controls the memory
usage of the write table within a configurable limit to prevent
it from using too much memory. All operations over the
write table must be lightweight and performed through a fine-
controlled thread pool. In production, we provide a hot switch
so that users can choose to turn on/off the isolation feature
dynamically. For instance, if there is a need for an offline Map-
Reduce job to ingest large amount of historical data into an IPS
cluster, the user can choose to turn on the isolation temporarily
to avoid interference with the online feature serving.

G. Fault Tolerance

As a production service that serves tens of millions requests
per second, IPS must meet the stringent high availability
criteria in a multiple-region data center setup. When a region
fails, the other regions are able to take over all the traffic within
minutes. In each local region, the IPS instances are vertically
co-located with the services to minimize the access latency.

To ensure data consistency across the multi-region deploy-
ments, IPS employs the approach of multi-region writing in
upstream Flink job. As shown in Figure 15, the upstream
applications write data to all IPS instances regardless of region
but only query those instances in the local region. In this
multi-region deployment, only one IPS instance of a region
persists data to the master cluster of the key-value store and
the rest instances only query the slave cluster of the key-
value store in their local regions. Note that this design can
only guarantee weak data consistency across multiple regions
because a failed node may have chances to load stale data. In
our experience, this simple strategy works pretty well as minor
data inconsistency is negligible in most recommendation based
applications.

DataCenter A DataCenter B

IPS Compute Cache Layer

KV Store Replicas

IPS Compute Cache Layer

KV Store Primary

Data Sync

Read Write

Read & Write Read & Write

Read

Write Write

Fig. 15. IPS multi-regions deployment

!

"

#

$

%

&!

&"

!

'

&!

&'

"!

"'

(!

('

#!

#'

!"#$% !"#$& !"#$' !"#$(!"#$) !"#$* !"#$+

,
-
.
/#

0"
1.
2
3#

42
5
46
64
7.
38
2
9

5
46
64
7.
38
2
9

,
-
.
/#

:
;
/8
-
<
;
=
-
1
=
.
/
>
.
38
2
9 5
46
64
8
2
7

!"1.:4?.

,-./#$1;/8-<;=-1$=./$7.3829 ,-./#$6"1.23#$=31@@$42$?7 ,-./#$6"1.23#$=31)A$42$?7

Fig. 16. Query throughput, 99th-percentile and 50th-percentile latency of
Jinri Toutiao IPS cluster during Spring Festival of 2020

IV. PRODUCTION METRICS

ByteDance has more than 50 IPS deployments in produc-
tion, serving a variety of recommendation based products.
All these clusters run on top of Kubernetes in a cloud
native manner, which provides great resource efficiency and
flexibility. In order to reduce resource fragmentation, a pod of
IPS usually occupies the entire RAM resources on a host. IPS
pod can auto-scale up and down depending on the workload.
Each IPS cluster is usually shared by multiple applications in a
multi-tenancy manner and a quota in terms of QPS is enforced
for each upstream application. If an upstream client’s usage
exceeds its quota, IPS server will reject the requests from the
same client until its usage falls below the limit.

At present, one of the largest IPS clusters in production is
used by Jinri Toutiao with more than one thousand machines.
The rest of this section shows key production metrics of this
cluster as examples to demonstrate the scalability, performance
and availability of IPS. Note that all metrics are measured by
monitoring requests to/from IPS where the upstream callers are
the online recommendation services of Jinri Toutiao product.

A. Scalability

Figure 16 shows the query throughput and latency of the
IPS cluster that serves feature retrieval from Jinri Toutiao

!"#

!$!!%"#

!$!&"#

!$!&%"#

!$!'"#

!$!'%"#

!$!("#

)*+
"&
)*+

"'
)*+

"(
)*+

",
)*+

"%
)*+

"-
)*+

".
)*+

"/
)*+

"0
)*+

"&!
)*+

"&&
)*+

"&'
)*+

"&(
)*+

"&,
)*+

"&%

!
"
#
$
"
%&
'
((
)
(
!
*
&"

)*123452

6728+"8267291"288:8"8*12

Fig. 17. IPS request error rate in client side over twenty days

App during the Spring Festival of 2020. Each single pull-
down in the App by a user will result in several articles
or videos refreshed, which gets translated into a number of
feature queries in the backend to the IPS cluster as part of
the recommendation process. During the peak hours, the total
throughput of this IPS cluster ranges from 30 millions to
40 millions feature queries per second; the 99th-percentile
latency went from 9ms to 10ms and the 50th-percentile latency
basically remains flat at about 1ms, attesting our approach
scales as expected even though the online traffic fluctuates
significantly.

B. Availability

Online recommendation applications usually impose a
higher requirement on throughput and availability over profile
services than strong consistency and accuracy. In production,
it is critical for a large IPS cluster to continue functioning in
the presence of machine crashes, network outages and data
center failovers.

Figure 17 shows the upstream request error rate of Jinri
Toutiao IPS cluster over 20 days. The maximum error rate is
around 0.025% and the average is below 0.01%. The overall
Service Level Agreement (SLA) can reach 99.99% in our
production environment.

C. Performance

As described in section III, the end to end latency of IPS
requests consists of network transmissions and the time for
IPS to compute and retrieve profile data from the persistent
key-value store in case of cache misses. Table II shows the
IPS query latency on both client and server side, categorized
by cache hit and cache miss, respectively. The overhead of
package transmission on network is about 3ms and grows
proportionally to the response data size.

In comparison, the cache hit cases save approximately 2
to 4 ms for each query. As shown in Figure 18, the typical
cache hit ratio of an IPS cluster is above 90% and the memory
usage ratio of the cluster remains stable at around 85%, thanks
to the profile split optimization and the corresponding cache
management strategy described in Section III.

TABLE II
CLIENT AND SERVER SIDE IPS LATENCY IN MILLISECONDS FOR QUERY

REQUEST, CATEGORIZED BY CACHE HIT AND CACHE MISS

cache hit lat. (msec) cache miss lat. (msec)
Operation 50% avg 99% 50% avg 99%
Query (client side) 3.5 3.9 10.2 4.1 4.7 14.1
Query (server side) 0.9 1.3 6.0 1.52 2.1 10.0

!"#

!!#

!$#

$%#

$&#

$'#

$(#

$)#

$*#

$+#

!%#

!&#

!'#

!(#

!)#

!*#

!+#

% ,-./& ,-./' ,-./(,-./) ,-./* ,-./+ ,-./" ,-./!

!
"
#
$
%&

'
(
)*
"
+
,-
.
(
-,
$

!
"
#
$
%&

/
0(
1
"
.
(
-,
$

2(-"3,#"

#"#$%&450(1"4%(-,$ #"#$%&4)()*"4*,-4%(-,$

Fig. 18. IPS memory usage and cache hit ratio

Figure 19 shows the add throughput and latency of Jinri
Toutiao IPS cluster over five days. During the peak hours,
the throughput ranges from 3 million to 4 million writes per
second; the 99th-percentile latency went from 4ms to 6ms
and the 50th-percentile latency basically remains flat at about
0.5ms. Comparing to the query throughput above, we can see
that the read traffic is about 10 times as that of the write traffic,
which is typical in the targeted scenarios.

As described in Section III, IPS adopts read-write isolation
to protect the query performance from being affected by the
write requests. After the feature is enabled in production, the
99th-percentile latency of write operation went down about
80% while the query latency remains fairly stable.

V. EXPERIENCES & LESSONS LEARNED

In this section, we briefly discuss some operational ex-
periences and lessons we have learned after running IPS in
production over past two years. As IPS serves as a general
feature service, we have cooperated with many teams from
recommendation, ads and search. The upstream customers
provided us a lot of valuable feedback, which also greatly
accelerated the iterations of the system.

a) Simplify User Adoption: Although IPS offers many
advantages over legacy systems, as a new service, it inevitably
imposed some barriers for customers to adopt at very early
stage. Many customers need to thoroughly research the code
and tune the right parameters to achieve satisfactory perfor-
mance. In order to facilitate further adoption of IPS within
the company, we summarized the typical usage scenarios and
provided higher-level APIs or templating tools to ease the in-
tegration. For instance, we provide a number of streaming job
templates for users to quickly create data ingestion pipelines
as well as multilingual clients with higher level APIs.

b) Support Resource Quota and Online Re-
configurations: One IPS cluster is usually shared by multiple

!

"

#

$

%

&

'

(

!

!)&

"

")&

#

#)&

$

$)&

%

%)&

*+,-" *+,-# *+,-$ *+,-%

.
/
/
0+
12
3
4,

53
6
57
75
82
49
3
/

6
57
75
82
49
3
/

.
/
/
:
;
<9
=
>
;
?
=
1
?
2
<
@
2
49
3
/

6
57
75
9
3
8

*+12:5A2

!""#$%&'()%*($#*+&#,+-'." !""#/0$+.-1#*-$22#3.#4, !""#/0$+.-1#*-$56#3.#4,

Fig. 19. Add throughput, 99th-percentile and 50th-percentile latency of Jinri
Toutiao IPS cluster

upstream services, which aims to maximize the feature reuse.
These callers may have different product strategies which
vary a lot in terms of query QPS. In addition, there may
be concurrent offline ingestion jobs during peak hours for
back filling historical profile data. To prevent interference
with each other, IPS provides resource quota mechanism
based on the caller identity. A QPS quota is enforced for
each caller on the server side to ensure the serving capacity
required by customers of different SLAs. Besides the online
quota, machine learning engineers often need to quickly
test the effectiveness of different features. For example, a
customer may need to run repeated experiments to obtain the
best configurations of compaction and truncation inside IPS
that can affect the time precision of certain features. With
hot-reload functionality enabled for all feature dependent
configurations, most changes can be made live in minutes
without the overhead to restart the services.

c) Feature Engineering Efficiency Really Matters: As
IPS has gradually become the unified profile management
solution for online recommendations inside ByteDance, we
got many feedback and insights from the key customers. First
and foremost, IPS allows engineers to focus on their business
logic without the overhead to create siloed profile services
as before. Second, the implementation of IPS is often more
efficient than legacy systems, which reduces a lot of wasted
efforts. Third, since one IPS cluster can be reused by multiple
products, one useful feature can be quickly propagated to all
relevant upstream callers with almost zero additional cost.
Last, many more enhancements over model accuracy become
possible with the help of IPS. For instance, in one advertising
related launch, the quick introduction of more IPS powered
features led to 8% more ad clicks and 4% more conversions
overall, which gets translated to significant amount of business
values.

VI. RELATED WORK

There has been a rich literature on the machine learning
systems, especially focusing on the sparse models. In general
there are two types of designs, with or without Parameter
Servers. The parameter server architecture [13]–[18] relies on

a centralized or distributed key-value store to store and update
the parameters. The non-parameter server architecture [19]–
[21] treats many nodes as homogeneous computing nodes,
where each node can independently compute and store model
weights. They often focus on the model itself, e.g., model em-
beddings, especially on the communication and computation
efficiency. These work can also benefit from IPS in making
better use of the features.

Traditionally, distributed key-value stores [22]–[24] are of-
ten used to implement the user profile systems. For example,
Google’s Personalized Search relies on Bigtable to record
the user queries and clicks. Similar to the long-term profile
described in Secition I, a MapReduce job over Bigtable peri-
odically generates the user profile that is used to personalize
the live search results. Another common way of implementing
real-time model training is to leverage an external steaming
processing system to aggregate events in sliding windows with
different granularities, e.g. 5-min item clicks or 7-days item
views. These aggregations are then written to a key-value store
for online serving. In contrast, IPS explores a unique design
by combining real-time ingestion, automatic aggregation and
flexible window query in a coherent manner. As a result, the
cost for incorporating new features into models in IPS can be
significantly reduced, compared to the key-value store based
approaches.

IPS also bears certain resemblance to OLAP systems [25]–
[28], especially when considering aggregation and sorting
operations in IPS are common SQL operators as well. These
OLAP systems are primarily designed for analyzing large-
scale data stored on distributed file systems and leverage in-
memory cache to accelerate query processing. OLAP systems
supports much more query operators such as joins than IPS.
However, their intended use cases have much higher query
latency (e.g. from 10s of seconds to 10s of minutes) than what
is required for IPS (i.e. 10s of milliseconds). Also, the cycle
for updating the underlying data of those OLAP systems is
usually at least hours instead of seconds as required by the
online machine learning systems.

Mesa [29] and Druid [30] are systems that are designed
for near real-time data ingestion and low latency analytical
queries over large data sets. There are also some recent
systems [31]–[33] developed towards unifying serving and
analytical processing. These systems are intended for use
cases in which data needs to have well-defined schemas, with
the help of rollups and materialized views to achieve the
desired performance. However, as the training instance data
is basically a bag of arbitrary key-value pairs, the data stored
in IPS is inherently unstructured for maximizing the flexibility
to incorporate new feature data. For Mesa like systems, there
is a 5 to 10 minutes end-to-end update latency, which is
deemed too high for online recommendation products as their
performance are highly sensitive to feature data freshness. As
for the query serving, a real-time analytical system may sustain
up to tens of thousand queries per second (QPS), which makes
it unsuitable to support the online recommendation use cases,
where tens of millions feature queries per second are fairly

common. In addition, none of the above systems are known
to automatically compact and eliminate feature data as IPS
does.

IPS shares some similarity to Time Series Databases
(TSDB) as well. For instance, IPS uses an in-memory data
structures that are similar to Gorilla’s [34] that also performs
time roll up aggregation for the older data. In comparison, the
TSDB systems are mostly used for online service monitoring
which has much more writes than reads. IPS needs to keep
all data in memory to query various windows simultaneously
while TSDB usually only caches the most recent data. As a
result, querying over a long time window in TSDB may incur
much higher latency.

VII. CONCLUSION

We have described IPS, a one-stop service for storing and
serving profile data. In the context of content recommendation,
one key insight is that individual data points are far less impor-
tant than the aggregated behaviors, and recent data is of much
higher value than old one. IPS’ design and implementation,
such as time-serial multi-level maps and automatic feature
aggregation and elimination, make deliberated trade offs which
primarily optimize for high availability and performance but
can tolerate small amount of data loss or inconsistency. In
essence, IPS acts as an in-memory cache that can sustain both
high throughput updates and low latency feature queries to an
ever-changing profiles of a large user base.

IPS is geo-replicated across multiple data centers for fault-
tolerance and its separation of cache and persistence layers
allows them to scale independently, which also facilitates the
component reuse and resource sharing. Since its introduction
two years ago, IPS’ usage has been doubling every a few
months given its scalability and flexibility in managing and
querying profile data, which has proven to be critical for real-
time recommendation at ByteDance.

ACKNOWLEDGMENTS

We would like to thank Mu Qiao, Zhe Li, Jingting Jin and
Changli Gao for their suggestions in the early stage of the IPS
design. We would also like to thank many collaborators across
ByteDance, especially Wenbin Tang, Wentao Yang, Dongliang
Li, Qi Dong, Conghui Liao, Liang Xiang and Xiaojia Chang,
for their patience and feedback as early adopters of the service.
We would also like to extend our gratefulness to the SRE
team, especially Yan Le and Chuanbing Jia for their production
support. We are also grateful to Zhenyuan Yang and Dingkun
Hong for their support and guidance to the team. Finally, we
thank the anonymous reviewers, whose insightful feedback
significantly improved the paper.

REFERENCES

[1] “Tiktok - wikipedia,” https://en.wikipedia.org/wiki/TikTok, 2017.
[2] “Jinri toutiao - wikipedia,” https://en.wikipedia.org/wiki/Toutiao, 2012.
[3] M. Kiran, P. Murphy et al., “Lambda architecture for cost-effective batch

and speed big data processing,” IEEE, pp. 2785–2792, 2015.
[4] H.-T. Cheng, L. Koc et al., “Wide & deep learning for recommender

systems,” 2016.

[5] M. Naumov, D. Mudigere et al., “Deep learning recommendation model
for personalization and recommendation systems,” 2019.

[6] P. Covington, J. Adams, and E. Sargin, “Deep neural networks
for youtube recommendations,” in Proceedings of the 10th ACM
Conference on Recommender Systems, ser. RecSys ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 191–198.
[Online]. Available: https://doi.org/10.1145/2959100.2959190

[7] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug 2009.

[8] S. Rendle, “Factorization machines,” in 2010 IEEE International Con-
ference on Data Mining, Dec 2010, pp. 995–1000.

[9] Y. Juan, Y. Zhuang et al., “Field-aware factorization machines for
ctr prediction,” in Proceedings of the 10th ACM Conference on
Recommender Systems, ser. RecSys ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 43–50. [Online].
Available: https://doi.org/10.1145/2959100.2959134

[10] “Apache thrift,” https://thrift.apache.org/, 2017.
[11] “Protocol buffers,” https://developers.google.com/protocol-buffers,

Google Inc., 2016.
[12] “Snappy,” http://google.github.io/snappy/, Google Inc., 2011.
[13] J. Jiang, B. Cui et al., “Heterogeneity-aware distributed parameter

servers,” in Proceedings of the 2017 ACM International Conference
on Management of Data, ser. SIGMOD ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 463–478. [Online].
Available: https://doi.org/10.1145/3035918.3035933

[14] M. Li, D. G. Andersen et al., “Scaling distributed machine learning with
the parameter server,” in Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’14. USA:
USENIX Association, 2014, p. 583–598.

[15] Q. Ho, J. Cipar et al., “More effective distributed ml via a stale
synchronous parallel parameter server,” in Proceedings of the 26th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’13. Red Hook, NY, USA: Curran Associates Inc.,
2013, p. 1223–1231.

[16] A. Smola and S. Narayanamurthy, “An architecture for parallel topic
models,” Proc. VLDB Endow., vol. 3, no. 1–2, p. 703–710, Sep. 2010.
[Online]. Available: https://doi.org/10.14778/1920841.1920931

[17] J. Dean, G. S. Corrado et al., “Large scale distributed deep networks,”
in NIPS, 2012.

[18] T. Chilimbi, Y. Suzue et al., “Project adam: Building an efficient and
scalable deep learning training system,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’14. USA: USENIX Association, 2014, p. 571–582.

[19] M. Abadi, P. Barham et al., “Tensorflow: A system
for large-scale machine learning,” in 12th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 16), 2016, pp. 265–283. [Online]. Available:
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[20] A. Paszke, S. Gross et al., “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle
et al., Eds. Curran Associates, Inc., 2019, pp. 8024–8035.
[Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[21] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” 2018.

[22] F. Chang, J. Dean et al., “Bigtable: A distributed storage system for
structured data,” in 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2006, pp. 205–218.

[23] G. DeCandia, D. Hastorun et al., “Dynamo: amazon’s highly available
key-value store.” in SOSP, T. C. Bressoud and M. F. Kaashoek,
Eds. ACM, 2007, pp. 205–220. [Online]. Available: http://dblp.uni-
trier.de/db/conf/sosp/sosp2007.html#DeCandiaHJKLPSVV07

[24] “Apache hbase,” https://hbase.apache.org/, 2007.
[25] M. Armbrust, R. S. Xin et al., “Spark SQL: relational data processing

in spark,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, T. K. Sellis, S. B. Davidson, and
Z. G. Ives, Eds. ACM, 2015, pp. 1383–1394. [Online]. Available:
https://doi.org/10.1145/2723372.2742797

[26] M. Kornacker, A. Behm et al., “Impala: A modern, open-source SQL
engine for hadoop,” in CIDR 2015, Seventh Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 4-7,

2015, Online Proceedings. www.cidrdb.org, 2015. [Online]. Available:
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf

[27] A. Hall, O. Bachmann et al., “Processing a trillion cells per mouse click,”
Proc. VLDB Endow., vol. 5, no. 11, pp. 1436–1446, 2012. [Online].
Available: http://vldb.org/pvldb/vol5/p1436_alexanderhall_vldb2012.pdf

[28] S. Melnik, A. Gubarev et al., “Dremel: Interactive
analysis of web-scale datasets,” Proc. VLDB Endow.,
vol. 3, no. 1, pp. 330–339, 2010. [Online]. Available:
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R29.pdf

[29] A. Gupta, F. Yang et al., “Mesa: Geo-replicated, near real-time, scalable
data warehousing,” Proc. VLDB Endow., vol. 7, no. 12, pp. 1259–
1270, 2014. [Online]. Available: http://www.vldb.org/pvldb/vol7/p1259-
gupta.pdf

[30] F. Yang, E. Tschetter et al., “Druid: a real-time analytical data store,”
in International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014. ACM, 2014, pp. 157–168.
[Online]. Available: https://doi.org/10.1145/2588555.2595631

[31] B. Chattopadhyay, P. Dutta et al., “Procella: Unifying
serving and analytical data at youtube,” Proc. VLDB Endow.,
vol. 12, no. 12, pp. 2022–2034, 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p2022-chattopadhyay.pdf

[32] C. Zhan, M. Su et al., “Analyticdb: Real-time OLAP database system
at alibaba cloud,” Proc. VLDB Endow., vol. 12, no. 12, pp. 2059–2070,
2019. [Online]. Available: http://www.vldb.org/pvldb/vol12/p2059-
zhan.pdf

[33] X. Jiang, Y. Hu et al., “Alibaba hologres: A cloud-native service
for hybrid serving/analytical processing,” Proc. VLDB Endow.,
vol. 13, no. 12, pp. 3272–3284, 2020. [Online]. Available:
http://www.vldb.org/pvldb/vol13/p3272-jiang.pdf

[34] T. Pelkonen, S. Franklin et al., “Gorilla: A fast, scalable, in-memory
time series database,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1816–
1827, 2015. [Online]. Available: http://www.vldb.org/pvldb/vol8/p1816-
teller.pdf

