Raft: A Consensus Algorithm
for Replicated Logs

VET | Nov
b| TES [Tan [
| ex v |

COS 418: Distributed Systems
Lecture 13

Wyatt Lloyd

Slides based on those from Diego Ongaro and John Ousterhout

Goal: Replicated Log

iq ij ij ij ij ij Clients

(Consensus Consensus Con nsus
Module achine Module achine uIe Ma |ne
‘ ng ‘ ng Servers

x x mx

|add|jmp|mov| |add|jmp|mov| |add|jmp|mov|

* Replicated log => replicated state machine

— All servers execute same commands in same order
« Consensus module ensures proper log replication

Raft Overview

1. Leader election

Normal operation (basic log replication)
Safety and consistency after leader changes
Neutralizing old leaders

Client interactions

o o 0D

Reconfiguration

Server States

« At any given time, each server is either:

— Leader: handles all client interactions, log
replication

— Follower: completely passive
— Candidate: used to elect a new leader

 Normal operation: 1 leader, N-1 followers

(Follower) (Candidate) (Leader)

Liveness Validation

 Servers start as followers

» Leaders send heartbeats _gempty AppendEntries
RPCs) to maintain authority

o |If electionTimeout elapses with no RPCs (100-
500ms), follower assumes leader has crashed
and starts new election

_ timeout, _
timeout, new election receive votes from

FoIIower) (Candidate) C Leader)

discover server with

discover current leader higher term
or higher term

Terms (aka epochs)

Term 1 Term 2 Term 3 Term 4 Term 5

) 4

Wi]

Elections Split Vote Normal Operation

* Time divided into terms
— Election (either failed or resulted in 1 leader)
— Normal operation under a single leader

 Each server maintains current term value

» Key role of terms: identify obsolete information

Elections

« Start election:
— Increment current term, change to candidate state, vote for self

« Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:
Become leader
Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
Return to follower state

3. No-one wins election (election timeout elapses):
Increment term, start new election

Elections

- Safety: allow at most one winner per term

— Each server votes only once per term (persists on disk)
— Two different candidates can’t get majorities in same term

B can't also '[][] ’[][][] Voted for
get majority | x ! candidate A
Servers

 Liveness: some candidate eventually wins
— Each choose election timeouts randomly in [T, 2T]
— One usually initiates and wins election before others start
— Works well if T >> network RTT

Log Structure

term 1 2 3 4 5 6 7 8
(A7 77723333
_f add [cmp]| ret |mov| jmp | div | shl | sub
command
1 1 1 2 3
add [cmp]| ret |mov| jmp
1 1 1 2 3 3 3 3
add [cmp]| ret |mov| jmp | div | shl | sub
1 1
add |cmp
1 1 1 2 3 3 3
add [cmp| ret |mov| jmp | div | shl

 /

l‘
l

* Log entry = < index, term, command >
» Log stored on stable storage (disk); survives crashes

* Entry committed if known to be stored on majority of servers
— Durable / stable, will eventually be executed by state machines

log index

leader

~ followers

committed entries

Normal operation

(Consensus Consensus Con nsus
Module achine Module achine Ma |ne

5 $ %.g«$

|add|jmp|mov| s |add|jmp|mov| s |add|jmp|mov| s

Client sends command to leader

Leader appends command to its log

Leader sends AppendEntries RPCs to followers

Once new entry committed:
— Leader passes command to its state machine, sends result to client
— Leader piggybacks commitment to followers in later AppendEntries
— Followers pass committed commands to their state machines

Normal operation

shl
(Consensus Consensus Consknsus te)
Module achine Module achine oWlule Madhine

Log *‘ Log i‘ Log *‘
|add|jmp|mov| s |add|jmp|mov| s 9 |add|jmp|mov| s

« Crashed / slow followers?
— Leader retries RPCs until they succeed

* Performance is “optimal” in common case:
— One successful RPC to any majority of servers

Log Operation: Highly Coherent

1 2 3 4 5 6

1 1 1 1 2 3 3
server add [cmp]| ret |[mov| jmp | div

2 1 1 1 2 3 4
server add [cmp| ret |[mov| jmp | sub

* If log entries on different server have same index and term:

— Store the same command
— Logs are identical in all preceding entries

* If given entry is committed, all preceding also committed

Log Operation: Consistency Check

leader |aqd|cmp| ret |mov| jmp AppendEntries succeeds:
: 7 T3 matching entry
follower

leader |,4q cmp| ret |mov| jmp AppendEntries fails:
I T B mismatch
follower |44 cmp| ret | shi

» AppendEntries has <index,term> of entry preceding new ones

* Follower must contain matching entry; otherwise it rejects

« Implements an induction step, ensures coherency

Leader Changes

* New leader’s log is truth, no special steps, start normal operation
— Will eventually make follower’s logs identical to leader’s
— Old leader may have left entries partially replicated

« Multiple crashes can leave many extraneous log entries

log index 1 2 3 4 5 6 7
term” s, 11| 1]5[6]6]6

Safety Requirement

« Raft safety property: If leader has decided log entry is
committed, entry will be present in logs of all future leaders

* Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed
3. Entries must be committed before applying to state machine

Committed — Present in future leaders’ logs

Restrictions on J \» Restrictions on

commitment leader election .

Picking the Best Leader

——————

, s 1|1]1]2i2][Committed?
Can't tell)
which entries s,|1|[1]|1]2
T T-T-T41 Unavailable during

committed! (

leader transition

 Elect candidate most likely to contain all
committed entries

— In RequestVote, candidates incl. index + term of last log entry

— Voter V denies vote if its log is “more complete”:
(newer term) or (entry in higher index of same term)

— Leader will have “most complete” log among electing majority

Committing Entry from Current Term

1 2 3 4 5

sq|1[1]2]2]2 -—— Leader for term 2

s;| 111 2; 2 E -—— AppendEntries just succeeded
S¢[1]1]2 Can’t be elected as

leader for term 3
S5 111

« Case #1: Leader decides entry in current term
iIs committed

« Safe: leader for term 3 must contain entry 4

Committing Entry from Earlier Term

5

Leader for term 4

AppendEntries just succeeded

1 3 4
S| 1 2|4
S, | 1 2
s [T 2]
S4| 1 -
S5 | 1 3|3

3

« Case #2: Leader trying to finish committing entry from

earlier

* Entry 3 not safely committed:
— S; can be elected as leader for term 5 (how?)
— If elected, it will overwrite entry 3on s,, s,, and s;

18

New Commitment Rules

12 3 4 5
s;|1]11]|2]4 Leader for term 4
s, 1124
s;|1]1]2]4
S4 1] 1
ss|1]1]3]3]3

* For leader to decide entry is committed:
1. Entry stored on a majority

2. =1 new entry from leader’s term also on majority

« Example; Once e4 committed, s; cannot be elected leader
for term 5, and e3 and e4 both safe

Challenge: Log Inconsistencies

1.2 3 4 5 6 7 8 9 10 11 12

Leader for term 8 1(1[(1]4|4]|5[5[6]|6]|6
~ Vi)
1 1
O I I I _i__i__i_f__fi____é\ Missing
oy [1T1]1]4 i/ Entries
...................... :,J_--\l
Possible c)(111(1]144]|]5]|5|6]|6 GE 6 i
) S
followers i
@f1|1[1]|4|4|5|5|6|6]6i7 7\
____________________ i~ Extraneous
Y y .
e | 1[1[1]a]a]a]al ! / =ntries
-]
----------- -"“‘
@ (11| 1f2]2]2|3]|3]|3[3]|3]
. e ’

Leader changes can result in log inconsistencies

20

Repairing Follower Logs nextindex

1.2 3 4 5 6 7 8 9110, 11 12

Leader for term 7 111]1]|14]|4|5[5[6]|6 [_6_: "
- 2 VaVaVavaVa'
@ |1]1]1]4
Followers - A aAtavatatatlal
o |1]1|1]2]2]2]|3|3|3|3]3

-

« New leader must make follower logs consistent with its own
— Delete extraneous entries
— Fill in missing entries

- Leader keeps nextindex for each follower:
— Index of next log entry to send to that follower
— Initialized to (1 + leader’s last index)

« If AppendEntries consistency check fails, decrement nextindex, try again

Repairing Follower Logs

nextindex
1 2 3 4 5 6 7 8 9 10 11 12

Leader for term 7 111|144]|5|5|6|6]|6

@i 1114

RN
RN
N
N
N
w
w
w
w
w

Before repair (f) | 1

After repair (f) | 1

—_
—_
SN

Neutralizing Old Leaders

Leader temporarily disconnected
—> other servers elect new leader
- old leader reconnected
- old leader attempts to commit log entries

* Terms used to detect stale leaders (and candidates)
— Every RPC contains term of sender

— Sender’s term < receiver:
* Receiver: Rejects RPC (via ACK which sender processes...)

— Receiver’s term < sender:
» Receiver reverts to follower, updates term, processes RPC

 Election updates terms of majority of servers
— Deposed server cannot commit new log entries

Client Protocol

 Send commands to leader
— If leader unknown, contact any server, which redirects client to leader

« Leader only responds after command logged, committed, and
executed by leader

* If request times out (e.qg., leader crashes):
— Client reissues command to new leader (after possible redirect)

* Ensure exactly-once semantics even with leader failures
— E.g., Leader can execute command then crash before responding
— Client should embed unique request ID in each command
— This unique request ID included in log entry
— Before accepting request, leader checks log for entry with same id

RECONFIGURATION

Configuration Changes

* View configuration: {leader, { members }, settings }

« Consensus must support changes to configuration
— Replace failed machine
— Change degree of replication

« Cannot switch directly from one config to another:
conflicting majorities could arise

Cold r/ Chew \
Server 1 | | |

Server 2 | | | Majority of C_,4
Server 3 | [|
Server 4 | : | Majority of C,,,

Server 5 | . |/
----- {
time —

2-Phase Approach via Joint Consensus

Joint consensus in intermediate phase: need majority of both
old and new configurations for elections, commitment

Configuration change just a log entry; applied immediately on
receipt (committed or not)

Once joint consensus is committed, begin replicating log entry
for final configuration

C_.4 can make C..., can make
_ old new
unilateral decisions unilateral decisions
> } >
Cron®®®®°® -
Cold newooooooo_ oooooo d:
Cold oooooo <
: : — >
Coignew €Ntry Cew ENtry time

committed committed

27

2-Phase Approach via Joint Consensus

* Any server from either configuration can serve as leader

If leader not in C,,,, must step down once C,,
committed

C.q Can make C,ew Can make
unilateral decisions unilateral decisions
=] | >
CneW —
Co|d+new.......5_ ‘:K Ieader not in Cnew
COld CoEEEEEEEES——— ¢ ¢ 0 0 0 © < : Steps down here
Coignew €Ntry Cew ENtry time

committed committed

29

