
1

Project proposal

• due Friday March 10
• 1-2 pages

– email to bwk, Subject: Project proposal
– content: URL or Word doc or text file

• name / title
• people

– names, email addresses, primary role(s)
– list one person as project manager, acts as contact

• project vision / goal
– 1-2 sentences (or a short paragraph) on what it is

• feature list
– what language(s) are we doing, major pieces (in order

if possible), how they fit together
• major design choices

– web vs. standalone, languages, tools, environment

• these are not binding commitments but should be
your best guess based on thought and discussion
among team members

• I'm looking for evidence that you have spent
some time thinking about it
– don't just throw together a page at the last minute

because it's due

Process: organizing what to do

• use an orderly process or it won't work
• this is NOT a process:

– talk about the software at dinner
– hack some code together
– test it a bit
– do some debugging
– fix the obvious bugs
– repeat from the top until semester ends

• classic "waterfall" model
specification
 requirements
 architectural design
 detailed design
 coding
 integration
 testing
 delivery

• this is too much overkill for 333
• however, some process is essential …

2

"Staged delivery" model

• conceptual design
– roughly, what are we doing?

• requirements definition ("what")
– gather ideas about what it should do
– potential users, competitive analysis, prototyping
– specify with written docs, scenarios, prototypes
– this should generally not change once you're started

it's too hard to hit a moving target

• architecture / design ("how")
– map out structure with design diagrams, prototypes
– explore options & alternatives on paper
– partition into major subsystems
– specify interactions between subsystems

interfaces, information flow, control flow
– decide pervasive design issues

language, environment, storage, error handling
– make versus buy decisions taken here

[aside on what you can use from elsewhere]

• implementation ("what by when")
– deliver in stages, each of which is complete, working

what will be in each release?
– test as you go

Deciding what to do

• formal processes are nice, but you still have to
do a lot of thinking and exploring informally

• do this early, so you have time to let ideas gell
• make big decisions first, to narrow the range of
uncertainty later
– Web based or standalone, Unix or Windows, what

target language?
 build the GUI in Java or VB or Tcl/Tk?

what kinds of windows will be visible?
 what do individual screens and menus look like?

• McConnell: "large grain" decisions before "small
grain"

• think through decisions at each stage so you
know enough to make decisions at next stage

• this is more iterative than this might imply
– don't make binding decisions until you are all fairly

comfortable with them

3

Other ways to think about it

• "elevator pitch"
– what would you say if you were alone in an elevator

with Bill Gates for 60 seconds?
– attention-grabbing description
– a paragraph without big words but good buzzwords

• 5-7 slides for a 5-10 minute talk
– what would be the titles and 2-3 points on each slide?

• 1 page advertisement
– what would be the main selling points?

• talk outline
– how would you organize a talk to give at the end of

the semester?
• business plan

– how would you pitch it to an angel or venture
capitalist?
what does it do for who?
who would want it?
what's the competition?
what are the stages of evolution or major releases?

Things to do from the beginning

• think about schedule
• plan for a sequence of stages

– do not build something that requires a "big bang"
where nothing works until everything works

– always be able to declare success and walk away
• simplify

– do not take on too big a job
– do not try to do it all at the beginning

• use source code control for everything
• leave room for "overhead" activities

– testing: you have to have a Quality Assurance plan
build quality in from the beginning

– documentation: you have to deliver written material
– deliverables: you have to package your system for

delivery
– changing your mind: some decisions will be reversed

and some work will have to be redone
– disaster: lost files, broken hardware, overloaded

systems are all inevitable
– sickness: you will lose time for all kinds of unavoidable

reasons
– health: there is more to life than this project!

• keep records, report where the time goes

4

Roles

• not all of these need be explicit, but projects
have to do these tasks

• project manager
– orchestrates code, testing, documentation, etc.
– in charge, but not necessarily the technical lead

• architect
– how do the pieces fit together
– makes it look like the product of a single mind

• user interface designer
– makes it look like the product of a single mind

• developer
– you all have to do some significant part of this

• quality assurance / testing
– responsible for making sure it always works

• toolsmith
– support, builds, export packaging

• documentor
– manual, internals doc, web page, blurbs, presentation

• risk officer (McConnell)
– what are the risks? what could go wrong?
– not the project manager!!

