COS 302 Precept 8

Spring 2020

Princeton University

Distribution Function Technique

Change of Variables

Distribution Function Technique

Change of Variables

We have seen many named distributions:

- Bernoulli a coin flip
- Binomial a series of coin flips
- Gaussian/Normal height
- Poisson amount of (e)mail(s) you receive daily

For every distribution there are several things to keep in mind:

- Discrete or Continuous
- Parameters
- Probability mass/density function
- Support nonzero parts
- Expectation or Mean
- Variance

For named distribution we have a lot of information.

 $X \sim \mathcal{N}(0, 1)$

But what about X^2 ? or $\log(X)$?

More generally if I have a a function U(X), what can our information about X tell us about U(X)?

Approaches

- Discrete
 - Direct Change
- Continuous
 - Distribution Function Technique
 - Change of Variables

Suppose X is distributed according to any discrete distribution, and we have an invertible function U(X) = Y, then

$$P(Y = y) = P(U(X) = y) = P(X = U^{-1}(y)).$$

Implies we can use X's pmf on the event $U^{-1}(y)$.

Distribution Function Technique

Change of Variables

For a continuous random variable X, a function Y = U(X):

1. Find the cdf:

$$F_Y(y) = P(Y \le y)$$

2. Differentiate the cdf $F_Y(y)$ to get the pdf $f_Y(y)$:

$$f_Y(y) = \frac{d}{dy}F_Y(y).$$

Let X be a continuous random variable defined on the interval [0,1] with pdf

$$f_X(x)=3x^2.$$

What is the pdf of the random variable $Y = X^2$?

Example 1 cont.

Step 1: Find the cdf.

$$\begin{split} F_Y(y) &= P(Y \leq y) \\ &= P(X^2 \leq y) \\ &= P(X \leq y^{1/2}) \\ &= F_X(y^{1/2}) \\ &= \int_0^{y^{\frac{1}{2}}} 3t^2 dt \\ &= [t^3]_{t=0}^{t=y^{1/2}} \\ F_Y(y) &= y^{3/2}, \ y \in [0, 1] \end{split}$$

Distribution Function Technique

Change of Variables

X is a univariate random variable (r.v.) with states $x \in [a, b]$ and pdf f(x). Another r.v. Y = U(X), where U is an invertible function. What is pdf f(y)?

Steps:

- 1. Transform cdf of Y into cdf of X.
- 2. Differentiate cdf to get pdf.

Change of Variables Steps Cont.

1. Transform cdf of Y into cdf of X.

By definition of cdf:

$$F_Y(y) = P(Y \le y) = P(U(X) \le y)$$

Assume U is strictly increasing, then U^{-1} is also strictly increasing.

$$egin{aligned} & P(U(X) \leq y) = P(U^{-1}(U(X)) \leq U^{-1}(y)) \ &= P(X \leq U^{-1}(y)) \end{aligned}$$

Change of Variables Steps Cont.

2. Differentiate cdf to get pdf.

Based on definition of the cdf of X,

$$F_Y(y) = P(X \le U^{-1}(y)) = \int_a^{U^{-1}(y)} f(x) dx$$

Differentiate with respect to y,

$$f(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}\int_a^{U^{-1}(y)}f(x)dx$$

Change of Variables Steps Cont.

$$\int f(x)dx = \int f(U^{-1}(y))U^{-1'}(y)dy$$
$$f(y) = \frac{d}{dy} \int_{a}^{U^{-1}(y)} f_x(U^{-1}(y))U^{-1'}(y)dy$$
$$= f_x(U^{-1}(y)) \cdot (\frac{d}{dy}U^{-1}(y)).$$

For both increasing and decreasing U,

$$f(y) = f_x(U^{-1}(y)) \cdot | \frac{d}{dy} U^{-1}(y) |$$

Example 2: Univariate Normal

Theorem

Suppose
$$X \sim N(\mu, \sigma^2)$$
 and $Z = U(X) = \frac{X-\mu}{\sigma}$.
Then $Z \sim N(0, 1)$.

Analysis:

$$f(z) = f_x(U^{-1}(z)) \cdot \mid \frac{d}{dz}U^{-1}(z) \mid$$

Example 2: Univariate Normal Cont.

Proof:
$$f_x(x) = \varphi(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
,
 $x = U^{-1}(z) = \sigma z + \mu$, $\frac{d}{dz} U^{-1}(z) = \sigma$.

$$f(z) = f_x(U^{-1}(z)) \cdot \left| \frac{d}{dz} U^{-1}(z) \right| = f_x(\sigma z + \mu) \cdot \left| \sigma \right|$$
$$= \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}z^2} \cdot \left| \sigma \right|$$
$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

Multivariate Change of Variables

Theorem

Let X be a multivariate continuous r.v., $f_x(x)$ be the pdf. If the vector-valued function y = U(x) is differentiable and invertible for all values within the domain of x, then for corresponding values of y, the pdf of Y = U(X) is given by

$$f(oldsymbol{y}) = f_{oldsymbol{x}}(U^{-1}(oldsymbol{y})) \cdot \mid \mathsf{det}(rac{\partial}{\partial oldsymbol{y}}U^{-1}(oldsymbol{y})) \mid$$

(Univariate: $f(y) = f_x(U^{-1}(y)) \cdot \mid \frac{d}{dy}U^{-1}(y) \mid$)

Example 3: Multivariate Gaussian

Let A be an invertible p imes p matrix , $\mu \in \mathbb{R}^{p imes 1}$, and $Z = (Z_1, \ldots, Z_p)' \in \mathbb{R}^{p \times 1}$ be independent standard normal r.v.'s $\{Z_i\} \sim N(0,1)$, with joint pdf $f_{z}(z) = (2\pi)^{-\frac{p}{2}} e^{-\frac{z'z}{2}}.$ Then $X = g(Z) = \mu + AZ \sim N(\mu, C)$, where $C = E(X - \mu)(X - \mu)'$ = E(AZ)(AZ)'= E[AZZ'A'] = AA'

Example 3: Multivariate Gaussian Cont.

Proof:
$$f(x) = f_z(g^{-1}(x)) \cdot |\det(\frac{\partial}{\partial x}g^{-1}(x))|$$

$$g^{-1}(\mathbf{x}) = A^{-1}(\mathbf{x} - \boldsymbol{\mu}), \frac{\partial}{\partial \mathbf{x}}g^{-1}(\mathbf{x}) = A^{-1}$$

$$f(\mathbf{x}) = f_{\mathbf{z}}(A^{-1}(\mathbf{x} - \boldsymbol{\mu})) \cdot |\det A|^{-1}$$

= $(2\pi)^{-\frac{p}{2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})'(A^{-1})'A^{-1}(\mathbf{x} - \boldsymbol{\mu})} / \sqrt{\det AA'}$
= $\frac{1}{\sqrt{(2\pi)^{p} \det C}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})'C^{-1}(\mathbf{x} - \boldsymbol{\mu})}$

Distribution Function Technique

Change of Variables

Let $X \sim \mathcal{N}(0, 1)$ and $Y = X^2$. The square function is not one-to-one on the whole real line (i.e. it's inverse only is defined for positive numbers).

However, $X^2 \le y \implies X \in [-\sqrt{y}, \sqrt{y}]$. Then $F_Y(y) = P(X^2 \le y)$ $= P(-\sqrt{y} \le X \le \sqrt{y})$ $= \Phi(\sqrt{y}) - \Phi(-\sqrt{y}) = 2\Phi(\sqrt{y}) - 1$ Once again let $X \sim \mathcal{N}(0, 1)$, and $Y = e^X$. Since the exponential function is strictly increasing and is one-to-one on the whole real line, then we can just apply the change of variable formula. Recall that $x = \log y$, and $dy/dx = e^x$. We have that

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = \varphi(x) \frac{1}{e^x} = \varphi(\log y) \frac{1}{y}, \ y > 0$$