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Algorithms

‣ strings in Java 

‣ key-indexed counting 

‣ LSD radix sort 

‣ MSD radix sort 

‣ 3-way radix quicksort 

‣ suffix arrays

5.1  STRING SORTS
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Given a text of n characters, preprocess it to enable fast substring search 

(find all occurrences of query string context).

% more tale.txt 
it was the best of times 
it was the worst of times 
it was the age of wisdom 
it was the age of foolishness 
it was the epoch of belief 
it was the epoch of incredulity 
it was the season of light 
it was the season of darkness 
it was the spring of hope 
it was the winter of despair 
    ⋮ 
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Keyword-in-context search



Given a text of n characters, preprocess it to enable fast substring search 

(find all occurrences of query string context). 

 

 

 

 

 

 

 

 

 

 

 

 

Applications.  Linguistics, databases, web search, word processing, ….

% java KWIC tale.txt 15 
search 
o st giless to search for contraband 
her unavailing search for your fathe 
le and gone in search of her husband 
t provinces in search of impoverishe 
 dispersing in search of other carri 
n that bed and search the straw hold 

better thing 
t is a far far better thing that i do than 
 some sense of better things else forgotte 
was capable of better things mr carton ent 
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Keyword-in-context search

number of characters of 
surrounding context
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Suffix sort

i t w a s b e s t i t w a s w
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 i t w a s b e s t i t w a s w
1 t w a s b e s t i t w a s w
2 w a s b e s t i t w a s w
3 a s b e s t i t w a s w
4 s b e s t i t w a s w
5 b e s t i t w a s w
6 e s t i t w a s w
7 s t i t w a s w
8 t i t w a s w
9 i t w a s w
10 t w a s w
11 w a s w
12 a s w
13 s w
14 w

form suffixes

3 a s b e s t i t w a s w
12 a s w
5 b e s t i t w a s w
6 e s t i t w a s w
0 i t w a s b e s t i t w a s w
9 i t w a s w
4 s b e s t i t w a s w
7 s t i t w a s w
13 s w
8 t i t w a s w
1 t w a s b e s t i t w a s w
10 t w a s w
14 w
2 w a s b e s t i t w a s w
11 w a s w

sort suffixes to bring query strings together

array of suffix indices 
in sorted order



・Preprocess:  suffix sort the text. 

・Query:  binary search for query; scan until mismatch.
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Keyword-in-context search:  suffix-sorting solution

⋮
632698 s e a l e d _ m y _ l e t t e r _ a n d _ …
713727 s e a m s t r e s s _ i s _ l i f t e d _ …
660598 s e a m s t r e s s _ o f _ t w e n t y _ …
67610 s e a m s t r e s s _ w h o _ w a s _ w i …
4430 s e a r c h _ f o r _ c o n t r a b a n d …
42705 s e a r c h _ f o r _ y o u r _ f a t h e …
499797 s e a r c h _ o f _ h e r _ h u s b a n d …
182045 s e a r c h _ o f _ i m p o v e r i s h e …
143399 s e a r c h _ o f _ o t h e r _ c a r r i …
411801 s e a r c h _ t h e _ s t r a w _ h o l d …
158410 s e a r e d _ m a r k i n g _ a b o u t _ …
691536 s e a s _ a n d _ m a d a m e _ d e f a r …
536569 s e a s e _ a _ t e r r i b l e _ p a s s …
484763 s e a s e _ t h a t _ h a d _ b r o u g h …

⋮

KWIC search for “search” in Tale of Two Cities
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War story

Q.  How to efficiently form (and sort) the n suffixes?

String[] suffixes = new String[n]; 
for (int i = 0; i < n; i++) 
    suffixes[i] = s.substring(i, n); 

Arrays.sort(suffixes);
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

3rd printing (2012)

input file characters Java 7u5 Java 7u6

amendments.txt 18 K 0.25 sec 2.0 sec

aesop.txt 192 K 1.0 sec out of memory

mobydick.txt 1.2 M 7.6 sec out of memory

chromosome11.txt 7.1 M 61 sec out of memory



How much memory as a function of n?
 

A. 1 

B. n

C. n log n

D. n2
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Radix sorting:  quiz 3

String[] suffixes = new String[n]; 
for (int i = 0; i < n; i++) 
    suffixes[i] = s.substring(i, n); 

Arrays.sort(suffixes);
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms
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Java 7u5

Java 7u6
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The String data type:  Java 7u5 implementation

public final class String implements Comparable<String> 
{ 
   private char[] value;  // characters 
   private int offset;    // index of first char in array 
   private int length;    // length of string 
   private int hash;      // cache of hashCode() 
   …

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

offset = 0

length = 12String s = "Hello, World";

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

offset = 7

length = 5
String t = s.substring(7, 12);

(constant extra memory)
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The String data type:  Java 7u6 implementation

public final class String implements Comparable<String> 
{ 
   private char[] value;  // characters 
   private int hash;      // cache of hashCode() 
   …

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

String s = "Hello, World";

W O R L D

0 1 2 3 4

value[]

String t = s.substring(7, 12);
(linear extra memory)
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The String data type:  performance

String data type (in Java).  Sequence of characters (immutable). 

Java 7u5.  Immutable char[] array, offset, length, hash cache. 

Java 7u6.  Immutable char[] array, hash cache.

operation Java 7u5 Java 7u6

length 1 1

indexing 1 1

concatenation m + n m + n

substring extraction 1 n

immutable? ✔ ✔

memory 64 + 2n 56 + 2n
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A Reddit exchange

I'm the author of the substring() change. As has 
been suggested in the analysis here there were two 
motivations for the change 

• Reduce the size of String instances. Strings 
are typically 20-40% of common apps footprint. 

• Avoid memory leakage caused by retained 
substrings holding the entire character array.

bondolo

http://www.reddit.com/r/programming/comments/1qw73v/til_oracle_changed_the_internal_string

Changing this function, in a bugfix release no 
less, was totally irresponsible. It broke backwards 
compatibility for numerous applications with errors 
that didn't even produce a message, just freezing 
and timeouts...  All pain, no gain. Your work was 
not just vain, it was thoroughly destructive, even 
beyond its immediate effect.

cypherpunks
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Suffix sort

Q.  How to efficiently form (and sort) suffixes in Java 7u6? 

A.  Define Suffix class ala Java 7u5 String representation.

public class Suffix implements Comparable<Suffix> 
{ 
   private final String text; 
   private final int offset; 
   public Suffix(String text, int offset) 
   { 
      this.text = text; 
      this.offset = offset; 
   } 
   public int length()               { return text.length() - offset;   } 
   public char charAt(int i)         { return text.charAt(offset + i);  } 
   public int compareTo(Suffix that) { /* see textbook */               } 
}

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

text[]

offset



13

Suffix sort

Q.  How to efficiently form (and sort) suffixes in Java 7u6? 

A.  Define Suffix class ala Java 7u5 String representation. 

 

 

 

 

 

 

 

 

 

Optimizations.  [5× faster and 32× less memory than Java 7u5 version] 

・Use 3-way string quicksort instead of Arrays.sort().  

・Manipulate suffix offsets directly instead of via explicit Suffix objects.

Suffix[] suffixes = new Suffix[n]; 
for (int i = 0; i < n; i++) 
    suffixes[i] = new Suffix(s, i); 

Arrays.sort(suffixes);
ROBERT SEDGEWICK  |  KEVIN WAYNE
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Conjecture.  [Knuth 1970]  No linear-time algorithm. 

 

Proposition.  [Weiner 1973]  Linear-time algorithms (suffix trees).
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Suffix arrays:  theory

LINEAR PATTERN MATCHING ALGORITHMS

Peter Weiner

*The Rand Corporation, Santa Monica, California

Abstract

In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching
in linear time. Related problems, such as those discussed in [4], have pre-
viously been solved by efficient but sub-optimal algorithms. In this paper, we
introduce an interesting data structure called a bi-tree. A linear time algo-
rithm "for obtaining a compacted version of a bi-tree associated with a given
string is presented. With this construction as the basic tool, we indicate how
to solve several pattern matching problems, including some from [4], in linear
time.

I. Introduction

In 1970, Knuth, Morris, and Pratt [1-2] showed how to
match a given pattern into another given string in time
proportional to the sum of the lengths of the pattern
and string. Their algorithm was derived from a result
of Cook [3] that the 2-way deterministic pushdown lan-
guages are recognizable on a random access machine in
time O(n). Since 1970, attention has been given to
several related problems in pattern matching [4-6], but
the algorithms developed in these investigations us-
ually run in time which is slightly worse than linear,
for example O(n log n). It is of considerable interest
to either establish that there exists a non-linear
lower bound on the run time of all algorithms which
solve a given pattern matching problem, or to exhibit
an algorithm whose run time is of O(n).

In the following sections, we introduce an inter-
esting data structure, called a bi-tree, and show how
an efficient calculation of a bi-tree can be applied to
the linear-time (and linear-space) solution of several
pattern matching problems.

II. Strings, Trees, and Bi-Trees

In this paper, both patterns and strings are finite
length, fully specified sequences of symbols over a
finite alphabet [ = {al ,a2 , ... ,at }. Such a pattern of
length m will be denoted as

P = P (1) P (2) ... P (m ),

where P(i), an element of [, is the i th symbol in the
sequence, and is said to be located in the i th position.
To represent the substring of characters which begins
at position i of P and ends at position j, we write
P (i: j). That is, when i j, P (i: j ) = P (i) ... P (j ),
and P(i:j) = A, the null string, for i > j.

Let [* denote the set of all finite length strings
over [. strings WI and w2 in [* may be combined by
the operation of concatenation to form a new string
W = WI w2 . The reverse of a string P = A (1) ... A (m)
is the s t r ing pr = A (m) ... A (1 ).

The length of a string or pattern, denoted by 19(w)
for W E [*, is the number of symbols in the sequence.
For example, 19(P(i:j» = j-i+l if i j and is 0 if
i > j.

Informally, a bi-tree over [ can be thought of as
two related t-ary trees sharing a common node set.

*This work was partially supported by grants from
the Alfred P. Sloan Foundation and the Exxon Education
Foundation. P. Weiner was at Yale University when this
work was done.

Before giving a formal definition of a bi-tree, we re-
view basic definitions and terminology concerning t-ary
trees. (See Knuth [7] for further details.)

A t-ary tpee T over [ = {al, ... ,at } is a set of
nodes N which is either empty or consists of a poot,
nO E N, and t ordered, disjoint t-arY trees.

Clearly, every node ni E N is the root of some
t-ary tree T i which itself consists of n1 and t ordered,

iiidisjoint t-ary trees, say Tl , T2 , Tt • We call the
iiitree Tj a sub-tpee of T ; also, .all sub-trees of Tj are

considered to be sub-trees of T1 • It is natural to
associate with a tree T a successor function

S: NX[ (N-{nO}) U {NIL}

defined for ni E Nand a j E L by

ni , the root of if is non-empty
s(ni'Oj) = {NIL if is empty.

It is easily seen that this function completely deter-
mines a t-ary tree and we write T = (N, nO'S).

If n' = S(n,a), we say that nand n' are connected
by a bpanah from n to n f which has a label of o. wet
call n' a son of n, and n the father of n'. The degree
of a node n is the number of sons of that node, that is,
the number of distinct a for which S(n,a) NIL. A node
of degree 0 is a leaf of the tree.

It is useful to extend the domain of S from Nx[
to (N U {NIL}) x [* (and extend the range to include
nO) by the inductive definition

(Sl) S(NIL,w) NIL for all w E [*
(S2) S(n,A) = n for all n E N
(S3) S(n,u.xJ) = S(S(n,w),a) for all n EN, w E L*,

and a E L:.

Not every S: Nx[ (N-{nO}) U {NIL} is the successor
function of a t-ary tree. But a necessary and suffi-
cient condition for S to be a successor function of
some (unique, if it exists) t-ary tree can be expressed
in terms of the extended S. Namely, that there exists
exactly one choice of w such that S(nO'w} n for every
n E N. there exists a T such that T = (N,nO'S),
we say that S is

We may also associate with T a father function
F: N N defined by F(nO) = nO and for n' E N-{nO}'

F (n ') = n ¢) S (n ,a) = n' for s orne a E [.

“ has no practical virtue… but a historic   
  monument in the area of string processing. ”

(To appear in ALGORITHMICA)

On–line construction of su�x trees
1
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Abstract.

An on–line algorithm is presented for constructing the su�x tree for a

given string in time linear in the length of the string. The new algorithm has

the desirable property of processing the string symbol by symbol from left to

right. It has always the su�x tree for the scanned part of the string ready.

The method is developed as a linear–time version of a very simple algorithm

for (quadratic size) su�x tries. Regardless of its quadratic worst-case this

latter algorithm can be a good practical method when the string is not too

long. Another variation of this method is shown to give in a natural way the

well–known algorithms for constructing su�x automata (DAWGs).

Key Words. Linear time algorithm, su�x tree, su�x trie, su�x automa-

ton, DAWG.
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A Space-Economical Suffix Tree Construction Algorithm 

E D W A R D  M. M O C R E I G H T  

Xerox Polo Alto Research Center, Palo Alto, California 

AaSTRXCeV. A new algorithm is presented for constructing auxiliary digital search trees to aid in 
e x a c t - m a t c h  substrlng searching. This algorithm has the same asymptotic running time bound as 
previously published algorithms, but is more economical in space. Some implementation considera- 
tions are discussed, and new work on the modification of these search trees in response to incremental 
changes in the strings they index (the update problem) is presented.  

KEY WORDS AND PHRASES: pattern matching algorithms, searching, search trees, context search, 
substring search, analysis of algorithms 

ca CATEGORIES: 3.74, 4 34, 5 32 

Introduction 

A number of computer applications need a basic function which locates a specific sub- 
string of characters within a longer main string. The most obvious such application is 
context searching within a text editor. Other applications include automatic command 
completion by  the keyboard handling executive of an operating system, and limited 
pattern matching used in speech recognition [2]. This basic function is also useful as a 
building block in the construction of more sophisticated pattern matches. 

The naive algorithm to implement this function simply at tempts to match the sub- 
string against the main string in all possible alignments. I t  is straightforward but  can 
be slow since, for example, the program might reverify the fact tha t  position 17 in the 
main string is the character a almost as often as the number of characters in the substring 
(consider the substring a a a a a a a b ) .  An asymptotically more efficient algorithm was 
discovered by Knuth,  Pratt ,  and Morris in 1970 [5]. I t  involves preprocessing the sub- 
string into a search automaton and then feeding the main string into the search auto- 
maton, one character at a time. In  both of these algorithms the average search time is at 
least linear in the length of the main string. 

I f  one were expecting to do many substring searches in the same main string, it would 
be worthwhile to build an auxiliary index to that  main string to aid in the searches. A 
useful index structure which can be constructed in time linear in the length of the main 
string, and yet  which enables substring searches to be completed in time linear in the 
length of the substring, was first discovered by Weiner [8]. 

In  addition, his auxiliary index structure permits one easily to answer several new 
questions about the main string itself. For example, what is the longest substring of the 
main string which occurs in two places? in k places? One can also transmit (or store) a 
message with excerpts from the main string in minimum time (or spaco) by a dynamic 
programming process which for each position of the message finds the longest excerpt of 
the message which begins there and is a substring of the main string. This latter app}i- 
cation motivated Weiner's original discovery. 
Copyright (~) 1976, Association for Computing Machinery, Inc. General permission to republish, 
but not for profit, all or part of this material is granted provided that ACM's copyright notice is 
given and that reference is made to the publication, to its date of issue, and to  the  fact  that  reprinting 
privileges were granted by permission of the  Assoc iat ion  for Computing Machinery. 
Author's address" Xerox Polo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304. 

Jouraal of the Amociation for Computing Machinery, Vol. 23, No. 2, April 1976, pp. 262-272. 
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Suffix arrays:  practice

Applications.  Bioinformatics, information retrieval, data compression, … 

 

Many ingenious algorithms. 

・Constants and memory footprint very important. 

・State-of-the art still changing.

year algorithm worst case memory

1991 Manber–Myers n log n 8 n

1999 Larsson-Sadakane n log n 8 n

2003 Kärkkäinen-Sanders n 13 n

2003 Ko-Aluru n 10 n

2008 divsufsort2 n log n 5 n

2010 sais n 6 n

good choices 
(libdivsufsort)

about 10× faster 
than Manber–Myers

see lecture videos


