
Princeton University

COS 217: Introduction to Programming Systems

ARMv8 Architecture

argc

argv

argv array

env var array

argv strings

env var strings

TEXT

DATA

BSS

STACK

HEAP

Copyright © 2019 by Robert M. Dondero, Jr.

...

RODATA

0000000000000000

FFFFFFFFFFFFFFFF

Memory Chip

CPU Chip

Control Unit

Arithmetic Logic Unit (ALU)

Registers

r0

...

The

Program

Break

r1

r2

...

r28

r29

r30

zr

sp

pc

...

pstate

Xiaoyan Li
P1

Princeton University

COS 217: Introduction to Programming Systems

ARMv8 Registers

General Registers

Name Bits 63-0 Bits 31-0 Description Call Convention
r0 x0 w0 Argument 0, scratch, return value caller-saved
r1 x1 w1 Argument 1, scratch caller-saved
r2 x2 w2 Argument 2, scratch caller-saved
r3 x3 w3 Argument 3, scratch caller-saved
r4 x4 w4 Argument 4, scratch caller-saved
r5 x5 w5 Argument 5, scratch caller-saved
r6 x6 w6 Argument 6, scratch caller-saved
r7 x7 w7 Argument 7, scratch caller-saved
r8 x8 w8 Indirect result location (XR)
r9 x9 w9 Scratch caller-saved
r10 x10 w10 Scratch caller-saved

r11 x11 w11 Scratch caller-saved
r12 x12 w12 Scratch caller-saved
r13 x13 w13 Scratch caller-saved
r14 x14 w14 Scratch caller-saved
r15 x15 w15 Scratch caller-saved
r16 x16 w16 Intra-procedure call (IP0)
r17 x17 w17 Intra-procedure call (IP1)
r18 x18 w18 Platform register (PR)
r19 x19 w19 Local variable callee-saved
r20 x20 w20 Local variable callee-saved
r21 x21 w21 Local variable callee-saved
r22 x22 w22 Local variable callee-saved
r23 x23 w23 Local variable callee-saved
r24 x24 w24 Local variable callee-saved
r25 x25 w25 Local variable callee-saved
r26 x26 w26 Local variable callee-saved
r27 x27 w27 Local variable callee-saved
r28 x28 w28 Local variable callee-saved
r29 x29 w29 Frame pointer (FP)
r30 x30 w30 Procedure link register (LR)

Special Registers

Name Bits 63-0 Bits 31-0 Description
zr xzr wzr Zero register
sp sp wsp Stack pointer
pc pc Program counter
pstate pstate Processor state; contains the N, Z, C, and V condition flags

Copyright © 2019 by William Ughetta and Robert M. Dondero, Jr.

Xiaoyan Li
P2

Princeton University

COS 217: Introduction to Programming Systems

A Subset of ARMv8 Assembly Language

Simplifying assumptions: We will consider only programs whose functions:

• do not use floating point values,

• have parameters that are integers or addresses (but not structures),

• have return values that are integers or addresses (but not structures), and

• have no more than 8 parameters.

Comments

// This is a comment

Label Definitions

symbol:

Record the fact that symbol is a label that marks the current location within the current section

Directives

.section .sectionname

Make the sectionname section the current section; sectionname may be text, rodata,

data, or bss
.size symbol, expr

Set the size associated with symbol to the value of expression expr
.skip n

Skip n bytes of memory in the current section
.byte value1, value2, ...

Allocate one byte of memory containing value1, one byte of memory containing value2, ... in

the current section
.short value1, value2, …

Allocate two bytes (a half word) of memory containing value1, two bytes (a half word) of

memory containing value2, ... in the current section
.word value1, value2, …

Allocate four bytes (a word) of memory containing value1, four bytes (a word) of memory

containing value2, ... in the current section

.quad value1, value2, …

Allocate eight bytes (an extended word) of memory containing value1, eight bytes (an extended

word) of memory containing value2, ... in the current section
.ascii "string1", "string2", …

Allocate memory containing the characters from string1, string2, ... in the current section
.string "string1", "string2", …

Allocate memory containing string1, string2, ..., where each string is '\0' terminated, in

the current section
.equ symbol, expr

Define symbol to be an alias for the value of expression expr

symbol .req reg

Define symbol to be an alias for register reg

Page 1 of 6

Xiaoyan Li
P3

Instructions

The following is a subset and simplification of information provided in the manual ARMv8 Instruction Set

Overview.

Key

Wn 4 byte general register, or WZR

Wn|WSP 4 byte general register, or WSP

Xn 8 byte general register, or XZR

Xn|SP 8 byte general register, or SP

imm Immediate operand, that is, an integer

addr Memory address having one of these forms:

[Xn]

[Xn, imm]

[Xn, Xm]

[Xn, Xm, lsl 1] where the loaded/stored object consists of 2 bytes

[Xn, Xm, lsl 2] where the loaded/stored object consists of 4 bytes

[Xn, Xm, lsl 3] where the loaded/stored object consists of 8 bytes

Data Copy Instructions

MOV Wd, imm

Wd = imm

MOV Xd, imm

Xd = imm

MOV Wd|WSP, Ws|WSP

Wd|WSP = Ws|WSP

MOV Xd|SP, Xs|SP

Xd|SP = Xs|SP

Address Generation Instruction

ADR Xd, symbol

Place in Xd the address denoted by label symbol

Memory Access Instructions

LDR Wd, addr

Load 4 bytes from memory addressed by addr to Wd
LDR Xd, addr

Load 8 bytes from memory addressed by addr to Xd
LDRB Wd, addr

Load 1 byte from memory addressed by addr, then zero-extend it to Wd
LDRSB Wd, addr

Load 1 byte from memory addressed by addr, then sign-extend it into Wd
LDRSB Xd, addr

Load 1 byte from memory addressed by addr, then sign-extend it into Xd
LDRH Wd, addr

Load 2 bytes from memory addressed by addr, then zero-extend it into Wd
LDRSH Wd, addr

Load 2 bytes from memory addressed by addr, then sign-extend it into Wd
LDRSH Xd, addr

Load 2 bytes from memory addressed by addr, then sign-extend it into Xd

Page 2 of 6

Xiaoyan Li
P4

LDRSW Xd, addr

Load 4 bytes from memory addressed by addr, then sign-extend it into Xd

STR Ws, addr

Store 4 bytes from Ws to memory addressed by addr

STR Xs, addr

Store 8 bytes from Xs to memory addressed by addr

STRB Ws, addr

Store 1 bytes from Ws to memory addressed by addr

STRH Ws, addr

Store 2 byes from Ws to memory addressed by addr

Arithmetic Instructions

ADD Wd|WSP, Ws|WSP, imm

Wd|WSP = Ws|WSP + imm

ADD Xd|SP, Xs|SP, imm

Xd|SP = Xs|SP + imm

ADD Wd|WSP, Ws|WSP, Wm

Wd|WSP = Ws|WSP + Wm

ADD Xd|SP, Xs|SP, Wm

Xd|SP = Xs|SP + Wm

ADD Xd|SP, Xs|SP, Xm

Xd|SP = Xs|SP + Xm

ADDS Wd, Ws|WSP, imm

Wd = Ws|WSP + imm, setting each condition flag to 0 or 1 based upon the result
ADDS Xd, Xs|SP, imm

Xd = Xs|SP + imm, setting each condition flag to 0 or 1 based upon the result
ADDS Wd, Ws|WSP, Wm

Wd = Ws|WSP + Wm, setting each condition flag to 0 or 1 based upon the result
ADDS Xd, Xs|SP, Wm

Xd = Xs|SP + Wm, setting each condition flag to 0 or 1 based upon the result
ADDS Xd, Xs|SP, Xm

Xd = Xs|SP + Xm, setting each condition flag to 0 or 1 based upon the result
ADC Wd, Ws, Wm

Wd = Ws + Wm + C

ADC Xd, Xs, Xm

Xd = Xs + Xm + C

ADCS Wd, Ws, Wm

Wd = Ws + Wm + C, setting each condition flag to 0 or 1 based upon the result
ADCS Xd, Xs, Xm

Xd = Xs + Xm + C, setting each condition flag to 0 or 1 based upon the result
SUB Wd|WSP, Ws|WSP, imm

Wd|WSP = Ws|WSP - imm

SUB Xd|SP, Xs|SP, imm

Xd|SP = Xs|SP - imm

SUB Wd|WSP, Ws|WSP, Wm

Wd|WSP = Ws|WSP - Wm

SUB Xd|SP, Xs|SP, Wm

Xd|SP = Xs|SP - Wm

SUB Xd|SP, Xs|SP, Xm

Xd|SP = Xs|SP – Xm

SUBS Wd, Ws|WSP, imm

Wd = Ws|WSP - imm, setting each condition flag to 0 or 1 based upon the result
SUBS Xd, Xs|SP, imm

Xd = Xs|SP - imm, setting each condition flag to 0 or 1 based upon the result

Page 3 of 6

Xiaoyan Li
P5

SUBS Wd, Ws|WSP, Wm

Wd = Ws|WSP - Wm, setting each condition flag to 0 or 1 based upon the result

SUBS Xd, Xs|SP, Wm

Xd = Xs|SP – Wm, setting each condition flag to 0 or 1 based upon the result

SUBS Xd, Xs|SP, Xm

Xd = Xs|SP - Xm, setting each condition flag to 0 or 1 based upon the result

MUL Wd, Ws, Wm

Wd = Ws * Wm

MUL Xd, Xs, Xm

Xd = Xs * Xm

SDIV Wd, Ws, Wm

Wd = Ws / Wm, treating source operands as signed

SDIV Xd, Xs, Xm

Xd = Xs / Xm, treating source operands as signed

UDIV Wd, Ws, Wm

Wd = Ws / Wm, treating source operands as unsigned

UDIV Xd, Xs, Xm

Xd = Xs / Xm, treating source operands as unsigned

Logical Instructions

MVN Wd, Ws

Wd = ~Ws

MVN Xd, Xs

Xd = ~Xs

AND Wd|WSP, Ws, imm

Wd|WSP = Ws & imm

AND Xd|SP, Xs, imm

Xd|SP = Xs & imm

AND Wd, Ws, Wm

Wd = Ws & Wm

AND Xd, Xs, Xm

Xd = Xs & Xm

ANDS Wd, Ws, imm

Wd = Ws & imm, setting condition flag N to 0 or 1 based upon the result, Z to 0 or 1 based

upon the result, C to 0, and V to 0
ANDS Xd, Xs, imm

Xd = Xs & imm, setting condition flag N to 0 or 1 based upon the result, Z to 0 or 1 based

upon the result, C to 0, and V to 0
ANDS Wd, Ws, Wm

Wd = Ws & Wm, setting condition flag N to 0 or 1 based upon the result, Z to 0 or 1 based upon

the result, C to 0, and V to 0
ANDS Xd, Xs, Xm

Xd = Xs & Xm, setting condition flag N to 0 or 1 based upon the result, Z to 0 or 1 based upon

the result, C to 0, and V to 0
ORR Wd|WSP, Ws, imm

Wd|WSP = Ws | imm

ORR Xd|SP, Xs, imm

Xd|SP = Xs | imm

ORR Wd, Ws, Wm

Wd = Ws | Wm

ORR Xd, Xs, Xm

Xd = Xs | Xm

EOR Wd|WSP, Ws, imm

Wd|WSP = Ws ^ imm

EOR Xd|SP, Xs, imm

Page 4 of 6

Xiaoyan Li
P6

Xd|SP = Xs ^ imm

EOR Wd, Ws, Wm

Wd = Ws ^ Wm

EOR Xd, Xs, Xm

Xd = Xs ^ Xm

Shift Instructions

LSL Wd, Ws, imm

Wd = Ws << imm

LSL Xd, Xs, imm

Xd = Xs << imm

LSL Wd, Ws, Wm

Wd = Ws << Wm

LSL Xd, Xs, Xm

Xd = Xs << Xm

LSR Wd, Ws, imm

Wd = Ws >> imm (logical shift)

LSR Xd, Xs, imm

Xd = Xs >> imm (logical shift)

LSR Wd, Ws, Wm

Wd = Ws >> Wm (logical shift)

LSR Xd, Xs, Xm

Xd = Xs >> Xm (logical shift)

ASR Wd, Ws, imm

Wd = Ws >> imm (arithmetic shift)

ASR Xd, Xs, imm

Xd = Xs >> imm (arithmetic shift)

ASR Wd, Ws, Wm

Wd = Ws >> Wm (arithmetic shift)

ASR Xd, Xs, Xm

Xd = Xs >> Xm (arithmetic shift)

Branch Instructions

CMP Ws|WSP, imm

Alias for SUBS WZR, Ws|WSP, imm
CMP Xs|SP, imm

Alias for SUBS XZR, Xs|SP, imm
CMP Ws|WSP, Wm

Alias for SUBS WZR, Ws|WSP, Wm
CMP Xs|SP, Wm

Alias for SUBS XZR, Xs|SP, Wm
CMP Xs|SP, Xm

Alias for SUBS XZR, Xs|SP, Xm
B symbol

Jump to label symbol
Bcond symbol

Jump to label symbol if and only if cond is true, where cond is defined by this table:

Cond Meaning Condition Flags

EQ Equal Z==1

NE Not equal Z==0

Page 5 of 6

Xiaoyan Li
P7

LT Signed less than N!=V

LE Signed less than or equal N!=V || Z==1

GT Signed greater than N==V && Z==0

GE Signed greater than or equal N==V

LO Unsigned lower C==0

LS Unsigned lower or same C==0 || Z==1

HI Unsigned higher C==1 && Z==0

HS Unsigned higher or same C==1

MI Minus (negative) N==1

PL Plus (positive or 0) N==0

VS Overflow set V==1

VC Overflow clear V==0

CS Carry set C==1

CC Carry clear C==0

CBNZ Ws, symbol

Jump to label symbol if and only if Ws is not equal to zero
CBNZ Xs, symbol

Jump to label symbol if and only if Xs is not equal to zero
CBZ Ws, symbol

Jump to label symbol if and only if Ws is equal to zero
CBZ Xs, symbol

Jump to label symbol if and only if Xs is equal to zero

Function Call/Return Instructions

BL symbol

Place the address of the next sequential instruction in register X30, and jump to label symbol

RET

Jump to the instruction which is at the address in register X30

Copyright © 2019 by Robert M. Dondero, Jr.

Page 6 of 6

Xiaoyan Li
P8

hello.c (Page 1 of 1)

1: /*--*/
2: /* hello.c */
3: /* Author: Bob Dondero */
4: /*--*/
5:
6: #include <stdio.h>
7:
8: /*--*/
9:
10: /* Write "hello, world\n" to stdout. Return 0. */
11:
12: int main(void)
13: {
14: printf("hello, world\n");
15: return 0;
16: }

Xiaoyan Li
P9

hello.s (Page 1 of 1)

1: //--
2: // hello.s
3: // Author: Bob Dondero and William Ughetta
4: //--
5:
6: .section .rodata
7:
8: greetingStr:
9: .string "hello, world\n"
10:
11: //--
12:
13: .section .data
14:
15: //--
16:
17: .section .bss
18:
19: //--
20:
21: .section .text
22:
23: //--
24: // Write "hello, world\n" to stdout. Return 0.
25: // int main(void)
26: //--
27:
28: // Must be a multiple of 16
29: .equ MAIN_STACK_BYTECOUNT, 16
30:
31: .global main
32:
33: main:
34:
35: // Prolog
36: sub sp, sp, MAIN_STACK_BYTECOUNT
37: str x30, [sp]
38:
39: // printf("hello, world\n")
40: adr x0, greetingStr
41: bl printf
42:
43: // Epilog and return 0
44: mov w0, 0
45: ldr x30, [sp]
46: add sp, sp, MAIN_STACK_BYTECOUNT
47: ret
48:
49: .size main, (. - main)

Xiaoyan Li
P10

