
COS320: Compiling Techniques

Zak Kincaid

February 14, 2019



• Reminder: HW1 due on Tuesday
• Office hour change: Qinshi’s office hours will start at 3pm on Thursdays



Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization



Syntax-directed translation

• Compilation strategy in which syntax of the program drives code generation
• Assembly code generated from AST, or even directly by the parser
• No substantial code analysis or transformation

• Example: Lecture 2 compiler

x := 6;
ANS := 1;
WhileNZ (x) {

ans := ans * x;
x := x - 1

}

→

l e t run () =
l e t v_X = ref 0 i n
l e t v_ANS = ref 0 i n
v_X := 6;
v_ANS := 1;
whi le !v_X != 0 do

v_ANS := (!v_ANS * !v_X);
v_X := (!v_X + -1)

done;
!v_ANS



Syntax-directed translation

• Compilation strategy in which syntax of the program drives code generation
• Assembly code generated from AST, or even directly by the parser
• No substantial code analysis or transformation

• Example: Lecture 2 compiler

• Easy to implement, but:
• produces inefficient code
• can be difficult to implement some language features (e.g., first-class functions)



Intermediate Representations



Separation of concerns

• An IR breaks code generation up into two phases. Simpler & easier to implement
• Simplifies optimization

• E.g., in optimization pass, we don’t have to think about how code motion interacts w/ register
use

• Safety: IR can enforce maintenance of invariants (e.g. types)



Reusability

LLVM

C

C++

Rust

Go

Swift

x86

ARM

PowerPC

C++

MIPS



What makes a good IR?

1 Convenient to translate source language to IR
2 Convenient to generate assembly from IR
3 Convenient to manipulate IR during optimization



Varieties of IR

• In practice, compilers often use several IRs
• GCC: Source → GENERIC → GIMPLE → RTL → Target

• High-level
• Preserves high-level structures, but may simplify (e.g., convert for to do/while) or elaborate
• Some high-level optimizations (e.g., function inlining)

• Mid-level
• “Abstract assembly language”

• Still retains some high-level features (e.g., explicit functions, variables, structured data)
• Machine-independent optimizations

• Low-level
• Machine-dependent optimizations



A simple let-based IR

x = 2*(x + y) - (z * z) →
let tmp1 = x + y
let tmp2 = 2 * tmp1
let tmp3 = z * z
let tmp4 = tmp2 - tmp3
x = tmp4

1 Makes evaluation order explicit (no nested expressions)
2 Names all intermediate values
3 Distinguish between variables & intermediate values
4 Invariant: there is exactly one assignment to any temporary (warm-up to SSA)


