
Princeton University
COS 217: Introduction to Programming Systems

A Subset of ARMv8 Assembly Language

Simplifying assumptions: We will consider only programs whose functions:
• do not use floating point values,
• have parameters that are integers or addresses (but not structures),
• have return values that are integers or addresses (but not structures), and
• have no more than 8 parameters.

Comments

// This is a comment

Label Definitions

symbol:
Record the fact that symbol is a label that marks the current location within the current section

Directives

.section .sectionname
Make the sectionname section the current section; sectionname may be text, rodata,
data, or bss

.size symbol, expr
Set the size associated with symbol to the value of expression expr

.skip n
Skip n bytes of memory in the current section

.byte value1, value2, ...
Allocate one byte of memory containing value1, one byte of memory containing value2, ... in
the current section

.short value1, value2, …
Allocate two bytes (a half word) of memory containing value1, two bytes (a half word) of
memory containing value2, ... in the current section

.word value1, value2, …
Allocate four bytes (a word) of memory containing value1, four bytes (a word) of memory
containing value2, ... in the current section

.quad value1, value2, …
Allocate eight bytes (an extended word) of memory containing value1, eight bytes (an extended
word) of memory containing value2, ... in the current section

.ascii "string1", "string2", …
Allocate memory containing the characters from string1, string2, ... in the current section

.string "string1", "string2", …
Allocate memory containing string1, string2, ..., where each string is '\0' terminated, in
the current section

.equ symbol, expr
Define symbol to be an alias for the value of expression expr

symbol .req reg
Define symbol to be an alias for register reg

Page 1 of 6

Instructions

The following is a subset and simplification of information provided in the manual ARMv8 Instruction Set
Overview.

Key

Wn 4 byte general register, or WZR
Wn|WSP 4 byte general register, or WSP
Xn 8 byte general register, or XZR
Xn|SP 8 byte general register, or SP
imm Immediate operand, that is, an integer
addr Memory address having one of these forms:

[Xn]
[Xn, imm]
[Xn, Xm]
[Xn, Xm, lsl 1] where the loaded/stored object consists of 2 bytes
[Xn, Xm, lsl 2] where the loaded/stored object consists of 4 bytes
[Xn, Xm, lsl 3] where the loaded/stored object consists of 8 bytes

Data Copy Instructions

MOV Wd, imm
Wd = imm

MOV Xd, imm
Xd = imm

MOV Wd|WSP, Ws|WSP
Wd|WSP = Ws|WSP

MOV Xd|SP, Xs|SP
Xd|SP = Xs|SP

Address Generation Instruction

ADR Xd, symbol
Place in Xd the address denoted by label symbol

Memory Access Instructions

LDR Wd, addr
Load 4 bytes from memory addressed by addr to Wd

LDR Xd, addr
Load 8 bytes from memory addressed by addr to Xd

LDRB Wd, addr
Load 1 byte from memory addressed by addr, then zero-extend it to Wd

LDRSB Wd, addr
Load 1 byte from memory addressed by addr, then sign-extend it into Wd

LDRSB Xd, addr
Load 1 byte from memory addressed by addr, then sign-extend it into Xd

LDRH Wd, addr
Load 2 bytes from memory addressed by addr, then zero-extend it into Wd

LDRSH Wd, addr
Load 2 bytes from memory addressed by addr, then sign-extend it into Wd

LDRSH Xd, addr
Load 2 bytes from memory addressed by addr, then sign-extend it into Xd

Page 2 of 6

LDRSW Xd, addr
Load 4 bytes from memory addressed by addr, then sign-extend it into Xd

STR Ws, addr
Store 4 bytes from Ws to memory addressed by addr

STR Xs, addr
Store 8 bytes from Xs to memory addressed by addr

STRB Ws, addr
Store 1 bytes from Ws to memory addressed by addr

STRH Ws, addr
Store 2 byes from Ws to memory addressed by addr

Arithmetic Instructions

ADD Wd|WSP, Ws|WSP, imm
Wd|WSP = Ws|WSP + imm

ADD Xd|SP, Xs|SP, imm
Xd|SP = Xs|SP + imm

ADD Wd|WSP, Ws|WSP, Wm
Wd|WSP = Ws|WSP + Wm

ADD Xd|SP, Xs|SP, Wm
Xd|SP = Xs|SP + Wm

ADD Xd|SP, Xs|SP, Xm
Xd|SP = Xs|SP + Xm

ADDS Wd, Ws|WSP, imm
Wd = Ws|WSP + imm, setting each condition flag to 0 or 1 based upon the result

ADDS Xd, Xs|SP, imm
Xd = Xs|SP + imm, setting each condition flag to 0 or 1 based upon the result

ADDS Wd, Ws|WSP, Wm
Wd = Ws|WSP + Wm, setting each condition flag to 0 or 1 based upon the result

ADDS Xd, Xs|SP, Wm
Xd = Xs|SP + Wm, setting each condition flag to 0 or 1 based upon the result

ADDS Xd, Xs|SP, Xm
Xd = Xs|SP + Xm, setting each condition flag to 0 or 1 based upon the result

ADC Wd, Ws, Wm
Wd = Ws + Wm + C

ADC Xd, Xs, Xm
Xd = Xs + Xm + C

ADCS Wd, Ws, Wm
Wd = Ws + Wm + C, setting each condition flag to 0 or 1 based upon the result

ADCS Xd, Xs, Xm
Xd = Xs + Xm + C, setting each condition flag to 0 or 1 based upon the result

SUB Wd|WSP, Ws|WSP, imm
Wd|WSP = Ws|WSP - imm

SUB Xd|SP, Xs|SP, imm
Xd|SP = Xs|SP - imm

SUB Wd|WSP, Ws|WSP, Wm
Wd|WSP = Ws|WSP - Wm

SUB Xd|SP, Xs|SP, Wm
Xd|SP = Xs|SP - Wm

SUB Xd|SP, Xs|SP, Xm
Xd|SP = Xs|SP – Xm

SUBS Wd, Ws|WSP, imm
Wd = Ws|WSP - imm, setting each condition flag to 0 or 1 based upon the result

SUBS Xd, Xs|SP, imm
Xd = Xs|SP - imm, setting each condition flag to 0 or 1 based upon the result

Page 3 of 6

SUBS Wd, Ws|WSP, Wm
Wd = Ws|WSP - Wm, setting each condition flag to 0 or 1 based upon the result

SUBS Xd, Xs|SP, Wm
Xd = Xs|SP – Wm, setting each condition flag to 0 or 1 based upon the result

SUBS Xd, Xs|SP, Xm
Xd = Xs|SP - Xm, setting each condition flag to 0 or 1 based upon the result

MUL Wd, Ws, Wm
Wd = Ws * Wm

MUL Xd, Xs, Xm
Xd = Xs * Xm

SDIV Wd, Ws, Wm
Wd = Ws / Wm, treating source operands as signed

SDIV Xd, Xs, Xm
Xd = Xs / Xm, treating source operands as signed

UDIV Wd, Ws, Wm
Wd = Ws / Wm, treating source operands as unsigned

UDIV Xd, Xs, Xm
Xd = Xs / Xm, treating source operands as unsigned

Logical Instructions

MVN Wd, Ws
Wd = ~Ws

MVN Xd, Xs
Xd = ~Xs

AND Wd|WSP, Ws, imm
Wd|WSP = Ws & imm

AND Xd|SP, Xs, imm
Xd|SP = Xs & imm

AND Wd, Ws, Wm
Wd = Ws & Wm

AND Xd, Xs, Xm
Xd = Xs & Xm

ANDS Wd, Ws, imm
Wd = Ws & imm, setting condition flag N to 0 or 1 based upon the result, Z to 0 or 1 based
upon the result, C to 0, and V to 0

ANDS Xd, Xs, imm
Xd = Xs & imm, setting condition flag N to 0 or 1 based upon the result, Z to 0 or 1 based
upon the result, C to 0, and V to 0

ANDS Wd, Ws, Wm
Wd = Ws & Wm, setting condition flag N to 0 or 1 based upon the result, Z to 0 or 1 based upon
the result, C to 0, and V to 0

ANDS Xd, Xs, Xm
Xd = Xs & Xm, setting condition flag N to 0 or 1 based upon the result, Z to 0 or 1 based upon
the result, C to 0, and V to 0

ORR Wd|WSP, Ws, imm
Wd|WSP = Ws | imm

ORR Xd|SP, Xs, imm
Xd|SP = Xs | imm

ORR Wd, Ws, Wm
Wd = Ws | Wm

ORR Xd, Xs, Xm
Xd = Xs | Xm

EOR Wd|WSP, Ws, imm
Wd|WSP = Ws ^ imm

EOR Xd|SP, Xs, imm

Page 4 of 6

Xd|SP = Xs ^ imm
EOR Wd, Ws, Wm

Wd = Ws ^ Wm
EOR Xd, Xs, Xm

Xd = Xs ^ Xm

Shift Instructions

LSL Wd, Ws, imm
Wd = Ws << imm

LSL Xd, Xs, imm
Xd = Xs << imm

LSL Wd, Ws, Wm
Wd = Ws << Wm

LSL Xd, Xs, Xm
Xd = Xs << Xm

LSR Wd, Ws, imm
Wd = Ws >> imm (logical shift)

LSR Xd, Xs, imm
Xd = Xs >> imm (logical shift)

LSR Wd, Ws, Wm
Wd = Ws >> Wm (logical shift)

LSR Xd, Xs, Xm
Xd = Xs >> Xm (logical shift)

ASR Wd, Ws, imm
Wd = Ws >> imm (arithmetic shift)

ASR Xd, Xs, imm
Xd = Xs >> imm (arithmetic shift)

ASR Wd, Ws, Wm
Wd = Ws >> Wm (arithmetic shift)

ASR Xd, Xs, Xm
Xd = Xs >> Xm (arithmetic shift)

Branch Instructions

CMP Ws|WSP, imm
Alias for SUBS WZR, Ws|WSP, imm

CMP Xs|SP, imm
Alias for SUBS XZR, Xs|SP, imm

CMP Ws|WSP, Wm
Alias for SUBS WZR, Ws|WSP, Wm

CMP Xs|SP, Wm
Alias for SUBS XZR, Xs|SP, Wm

CMP Xs|SP, Xm
Alias for SUBS XZR, Xs|SP, Xm

B symbol
Jump to label symbol

Bcond symbol
Jump to label symbol if and only if cond is true, where cond is defined by this table:

Cond Meaning Condition Flags

EQ Equal Z==1
NE Not equal Z==0

Page 5 of 6

LT Signed less than N!=V
LE Signed less than or equal N!=V || Z==1
GT Signed greater than N==V && Z==0
GE Signed greater than or equal N==V

LO Unsigned lower C==0
LS Unsigned lower or same C==0 || Z==1
HI Unsigned higher C==1 && Z==0
HS Unsigned higher or same C==1

MI Minus (negative) N==1
PL Plus (positive or 0) N==0

VS Overflow set V==1
VC Overflow clear V==0

CS Carry set C==1
CC Carry clear C==0

CBNZ Ws, symbol
Jump to label symbol if and only if Ws is not equal to zero

CBNZ Xs, symbol
Jump to label symbol if and only if Xs is not equal to zero

CBZ Ws, symbol
Jump to label symbol if and only if Ws is equal to zero

CBZ Xs, symbol
Jump to label symbol if and only if Xs is equal to zero

Function Call/Return Instructions

BL symbol
Place the address of the next sequential instruction in register X30, and jump to label symbol

RET
Jump to the instruction which is at the address in register X30

Copyright © 2019 by Robert M. Dondero, Jr.

Page 6 of 6

	Comments
	Directives
	Instructions

