

2. AlGORITHM ANALYSIS

- computational tractability
- asymptotic order of growth
- implementing Gale-Shapley
- survey of common running times

Section 2.1

2. Algorithm Analysis

- computational tractability
- asymptotic order of growth
- implementing Gale-Shapley
- survey of common running times

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

A strikingly modern thought

" As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise-By what course of calculation can these results be arrived at by the machine in the shortest time? " - Charles Babbage (1864)
how many times do you have to turn the crank?

Models of computation: Turing machines

Deterministic Turing machine. Simple and idealistic model.

$$
\begin{aligned}
& \text { R-\#:\# } \\
& \text { \# \# \# } 11 \begin{array}{ll|l|l|l|l|l|l|l|}
\hline
\end{array}
\end{aligned}
$$

Running time. Number of steps.
Memory. Number of tape cells utilized.

Caveat. No random access of memory

- Single-tape TM requires $\geq n^{2}$ steps to detect n-bit palindromes.
- Easy to detect palindromes in $\leq c n$ steps on a real computer.

Models of computation: word RAM

Word RAM.

- Each memory location and input/output cell stores a w-bit integer.
- Primitive operations: arithmetic/logic operations, read/write memory, array indexing, following a pointer, conditional branch, ...

K
constant-time C-style operations ($w=64$)

Running time. Number of primitive operations.
Memory. Number of memory cells utilized.

Caveat. At times, need more refined model (e.g., multiplying n-bit integers).

Polynomial running time

Desirable scaling property. When the input size doubles, the algorithm should slow down by at most some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exist constants $c>0$ and $d>0$ such that,
for every input of size n, the running time of the algorithm
is bounded above by $\mathrm{c} \mathrm{n}^{\text {d }}$ primitive computational steps. \qquad choose $C=2^{d}$

(1953)

Nash (1955)

Gödel (1956)

(1964)

(1965)

Brute force

Brute force. For many nontrivial problems, there is a natural brute-force search algorithm that checks every possible solution.

- Typically takes 2^{n} steps (or worse) for inputs of size n.
- Unacceptable in practice.

Ex. Stable matching problem: test all n ! perfect matchings for stability.

Polynomial running time

We say that an algorithm is efficient if it has a polynomial running time.

Theory. Definition is (relatively) insensitive to model of computation.

Practice. It really works!

- The poly-time algorithms that people develop have both small constants and small exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions. Some poly-time algorithms in the wild have galactic constants and/or huge exponents.
Q. Which would you prefer: $20 n^{120}$ or $n^{1+0.02 \ln n}$?

Worst-case analysis

Worst case. Running time guarantee for any input of size n.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice because the worst-case instances don't arise.

simplex algorithm

Linux grep

k-means algorithm

2. Algorithm Analysis

- computational tractability
- asymptotic order of growth
- implementing Gale-Shapley
, survey of common running times

Other types of analyses

Probabilistic. Expected running time of a randomized algorithm.
Ex. The expected number of compares to quicksort n elements is $\sim 2 n \ln n$.

Amortized. Worst-case running time for any sequence of n operations. Ex. Starting from an empty stack, any sequence of n push and pop operations takes $O(n)$ primitive computational steps using a resizing array.

Also. Average-case analysis, smoothed analysis, competitive analysis, ...

Big O notation

Upper bounds. $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$.

Ex. $f(n)=32 n^{2}+17 n+1$.

- $f(n)$ is $O\left(n^{2}\right) . \quad \longleftarrow$ choose $c=50, n_{0}=1$
- $f(n)$ is neither $O(n)$ nor $O(n \log n)$.

Typical usage. Insertion sort makes $O\left(n^{2}\right)$ compares to sort n elements.

Analysis of algorithms: quiz 1

Let $f(n)=3 n^{2}+17 n \log _{2} n+1000$. Which of the following are true?

A. $f(n)$ is $O\left(n^{2}\right)$.
B. $f(n)$ is $O\left(n^{3}\right)$.
C. Both A and B.
D. Neither A nor B.

Big O notational abuses

One-way "equality." $O(g(n))$ is a set of functions, but computer scientists often write $f(n)=O(g(n))$ instead of $f(n) \in O(g(n))$.

Ex. Consider $g_{1}(n)=5 n^{3}$ and $g_{2}(n)=3 n^{2}$.

- We have $g_{1}(n)=O\left(n^{3}\right)$ and $g_{2}(n)=O\left(n^{3}\right)$.
- But, do not conclude $g_{1}(n)=g_{2}(n)$.

Domain and codomain. f and g and real-valued functions.

- The domain is typically the natural numbers: $N \rightarrow \mathbb{R}$.
- Sometimes we extend to the reals: $\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$.
- Or restrict to a subset.
plotting, limits, calculus

Bottom line. OK to abuse notation in this way; not OK to misuse it.

Big Omega notation

Lower bounds. $f(n)$ is $\Omega(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that $f(n) \geq c \cdot g(n) \geq 0$ for all $n \geq n_{0}$.

Ex. $f(n)=32 n^{2}+17 n+1$.

- $f(n)$ is both $\Omega\left(n^{2}\right)$ and $\Omega(n)$. \longleftarrow choose $c=32, n_{0}=1$
- $f(n)$ is not $\Omega\left(n^{3}\right)$

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Vacuous statement. Any compare-based sorting algorithm requires at least $O(n \log n)$ compares in the worst case.

Analysis of algorithms: quiz 2

Which is an equivalent definition of big Omega notation?

A. $\quad f(n)$ is $\Omega(g(n))$ iff $g(n)$ is $O(f(n))$.
B. $\quad f(n)$ is $\Omega(g(n))$ iff there exist constants $c>0$ such that $f(n) \geq c \cdot g(n) \geq 0$ for infinitely many n.
C. Both A and B.
D. Neither A nor B.

Analysis of algorithms: quiz 3

Which is an equivalent definition of big Theta notation?

A. $\quad f(n)$ is $\Theta(g(n))$ iff $f(n)$ is both $O(g(n))$ and $\Omega(g(n))$.
B. $f(n)$ is $\Theta(g(n))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$ for some constant $0<c<\infty$.
C. Both A and B.
D. Neither A nor B.

Big Theta notation

Tight bounds. $f(n)$ is $\Theta(g(n))$ if there exist constants $c_{1}>0, c_{2}>0$, and $n_{0} \geq 0$ such that $0 \leq c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)$ for all $n \geq n_{0}$.

Ex. $f(n)=32 n^{2}+17 n+1$.

- $f(n)$ is $\Theta\left(n^{2}\right)$. \longleftarrow choose $c_{1}=32, c_{2}=50, n_{0}=1$
- $f(n)$ is neither $\Theta(n)$ nor $\Theta\left(n^{3}\right)$.

Typical usage. Mergesort makes $\Theta(n \log n)$ compares to sort n elements.

Asymptotic bounds and limits

Proposition. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$ for some constant $0<c<\infty$ then $f(n)$ is $\Theta(g(n))$. Pf.

- By definition of the limit, for any $\varepsilon>0$, there exists n_{0} such that

$$
c-\epsilon \leq \frac{f(n)}{g(n)} \leq c+\epsilon
$$

for all $n \geq n_{0}$.

- Choose $\varepsilon=1 / 2 c$.
- Multiplying by $g(n)$ yields $1 / 2 c \cdot g(n) \leq f(n) \leq 3 / 2 c \cdot g(n)$ for all $n \geq n_{0}$.
- Thus, $f(n)$ is $\Theta(g(n))$ by definition, with $c_{1}=1 / 2 c$ and $c_{2}=3 / 2 c$. -

Proposition. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$, then $f(n)$ is $O(g(n))$ but not $\Omega(g(n))$.
Proposition. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$, then $f(n)$ is $\Omega(g(n))$ but not $O(g(n))$.

Asymptotic bounds for some common functions

Polynomials. Let $f(n)=a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ with $a_{d}>0$. Then, $f(n)$ is $\Theta\left(n^{d}\right)$.
Pf.

$$
\lim _{n \rightarrow \infty} \frac{a_{0}+a_{1} n+\ldots+a_{d} n^{d}}{n^{d}}=a_{d}>0
$$

Logarithms. $\log _{a} n$ is $\Theta\left(\log _{b} n\right)$ for every $a>1$ and every $b>1$.

$$
\text { Pf. } \quad \frac{\log _{a} n}{\log _{b} n}=\frac{1}{\log _{b} a} \quad \begin{gathered}
\text { no need to specify base } \\
\text { (assuming it is a constant) }
\end{gathered}
$$

Logarithms and polynomials. $\log _{a} n$ is $O\left(n^{d}\right)$ for every $a>1$ and every $d>0$. Pf.

$$
\lim _{n \rightarrow \infty} \frac{\log _{a} n}{n^{d}}=0
$$

Exponentials and polynomials. n^{d} is $O\left(r^{n}\right)$ for every $r>1$ and every $d>0$.
Pf.

$$
\lim _{n \rightarrow \infty} \frac{n^{d}}{r^{n}}=0
$$

Factorials. $n!$ is $2^{\Theta(n \log n)}$.
Pf. Stirling's formula: $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$

Big O notation with multiple variables

Upper bounds. $f(m, n)$ is $O(g(m, n))$ if there exist constants $c>0, m_{0} \geq 0$, and $n_{0} \geq 0$ such that $f(m, n) \leq c \cdot g(m, n)$ for all $n \geq n_{0}$ and $m \geq m_{0}$.

Ex. $f(m, n)=32 m n^{2}+17 m n+32 n^{3}$.

- $f(m, n)$ is both $O\left(m n^{2}+n^{3}\right)$ and $O\left(m n^{3}\right)$.
- $f(m, n)$ is neither $O\left(n^{3}\right)$ nor $O\left(m n^{2}\right)$.

Typical usage. Breadth-first search takes $O(m+n)$ time to find a shortest path from s to t in a digraph with n nodes and m edges.

Efficient implementation

Goal. Implement Gale-Shapley to run in $O\left(n^{2}\right)$ time.

GALE-SHAPLEY (preference lists for n hospitals and n students)
Initialize M to empty matching.
While (some hospital h is unmatched)
$s \leftarrow$ first student on h 's list to whom h has not yet proposed.
IF (s is unmatched)
Add $h-s$ to matching M.
ELSE IF (s prefers h to current partner h^{\prime}) Replace $h^{\prime}-s$ with $h-s$ in matching M.

ElSE s rejects h.

RETURN stable matching M.

Efficient implementation

Goal. Implement Gale-Shapley to run in $O\left(n^{2}\right)$ time.

Representing hospitals and students. Index hospitals and students $1, \ldots, n$.

Representing the matching.

- Maintain two arrays student[h] and hospital[$[s]$.
- if h matched to s, then $\operatorname{student}[h]=s$ and hospital $[s]=h$
- use value 0 to designate that hospital or student is unmatched
- Can add/remove a pair from matching in $O(1)$ time.
- Maintain set of unmatched hospitals in a queue (or stack).
- Can find an unmatched hospital in $O(1)$ time.

Data representation: accepting/rejecting a proposal

Student accepts/rejects a proposal.

- Does student s prefer hospital h to hospital h^{\prime} ?
- For each student, create inverse of preference list of hospitals.

$$
\begin{aligned}
& \begin{array}{ccccccccc}
\text { rank[] } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\cline { 2 - 8 } & 4^{\text {th }} & 8^{\text {th }} & 2^{\text {nd }} & 5^{\text {th }} & 6^{\text {th }} & 7^{\text {th }} & 3^{\text {rd }} & 1^{\text {st }}
\end{array}
\end{aligned}
$$

for $\mathbf{i}=1$ to n $\operatorname{rank}[\operatorname{pref}[\mathrm{i}]]=\mathrm{i}$

Bottom line. After $\Theta\left(n^{2}\right)$ preprocessing time (to create the n ranking arrays), it takes $O(1)$ time to accept/reject a proposal.

Data representation: making a proposal

Hospital makes a proposal.

- Key operation: find hospital's next favorite student.
- For each hospital: maintain a list of students, ordered by preference.
- For each hospital: maintain a pointer to student for next proposal.

Bottom line. Making a proposal takes $O(1)$ time.

Stable matching: summary

Theorem. Can implement Gale-Shapley to run in $O\left(n^{2}\right)$ time.
Pf.

- $\Theta\left(n^{2}\right)$ preprocessing time to create the n ranking arrays.
- There are $O\left(n^{2}\right)$ proposals; processing each proposal takes $O(1)$ time. -

Theorem. In the worst case, any algorithm to find a stable matching must query the hospital's preference list $\Omega\left(n^{2}\right)$ times.

Problem set 1

Due at 11 pm on Wednesday, 2/14.

- Submit .tex and .pdf files via CS Dropbox.
- Two files per problem.

Collaboration.

- Must write solutions on your own.
- Must write names of any collaborators in each file.

Solutions.

- Solve the given problem (e.g., both directions of "if and only if").
- Define any notation you introduce.
- Prove your assertions using mathematical rigor.
- Describe proof technique (constructive, induction, contradiction, etc.)
- Modularize your proofs (e.g., invariants, lemmas, etc.)
- Counterexamples need proofs too!
- Analyze worst-case running time of algorithm.

Constant time

Constant time. Running time is $O(1)$.

Examples.
bounded by a constant,

- Conditional branch.
- Arithmetic/logic operation.
- Declare/initialize a variable.
- Follow a link in a linked list.
- Access element i in an array.
- Compare/exchange two elements in an array.
- ...

2. Algorithm Analysis

, computational tractability

- asymptotic order of growth
- imnlementing Gale-Shanlev
- survey of common running times

Linear time

Linear time. Running time is $O(n)$.

Merge two sorted lists. Combine two sorted linked lists $A=a_{1}, a_{2}, \ldots, a_{n}$ and $B=b_{1}, b_{2}, \ldots, b_{n}$ into a sorted whole.
$O(n)$ algorithm. Merge in mergesort.

$i \leftarrow 1 ; j \leftarrow 1$.
While (both lists are nonempty)

$$
\text { IF (} a_{i} \leq b_{j} \text {) append } a_{i} \text { to output list and increment } i .
$$

ELSE append b_{j} to output list and increment j.
Append remaining elements from nonempty list to output list.

TARGET SUM

TARGET-SUM. Given a sorted array of n distinct integers and an integer T, find two that sum to exactly T ?

SEARCH IN A SORTED ROTATED ARRAY

SEARCh-In-Sorted-Rotated-Array. Given a rotated sorted array of n distinct integers and an element x, determine if x is in the array.

sorted rotated array

80	85	90	95	20	30	35	50	60	65	67	75
1	2	3	4	5	6	7	8	9	10	11	12

Logarithmic time. Running time is $O(\log n)$.

Search in a sorted array. Given a sorted array A of n distinct integers and an integer x, find index of x in array.
$O(\log n)$ algorithm. Binary search.
remaining elements

- Invariant: If x is in the array, then x is in $A[l o$.. hi].
- After k iterations of wHILE loop, $(h i-l o+1) \leq n / 2^{k} \Rightarrow k \leq 1+\log _{2} n$.

$$
\begin{aligned}
& l o \leftarrow 1 ; h i \leftarrow n . \\
& \text { While }(l o \leq h i) \\
& \quad \text { mid } \leftarrow\lfloor(l o+h i) / 2\rfloor . \\
& \text { IF } \quad(x<A[m i d]) h i \leftarrow m i d-1 . \\
& \quad \text { ELSE IF }(x>A[m i d]) l o \leftarrow m i d+1 . \\
& \text { ELSE RETURN } m i d .
\end{aligned}
$$

Return -1.

Linearithmic time

Linearithmic time. Running time is $O(n \log n)$.

Sorting. Given an array of n elements, rearrange them in ascending order.
$O(n \log n)$ algorithm. Mergesort.

LARGEST EMPTY INTERVAL

LARGEST-EMPTY-INTERVAL. Given n timestamps x_{1}, \ldots, x_{n} on which copies of a file arrive at a server, what is largest interval when no copies of file arrive?

Quadratic time

Quadratic time. Running time is $O\left(n^{2}\right)$.

Closest pair of points. Given a list of n points in the plane $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, find the pair that is closest to each other.
$O\left(n^{2}\right)$ algorithm. Enumerate all pairs of points (with $i<j$).

$$
\begin{aligned}
& \min \leftarrow \infty . \\
& \text { FOR } i=1 \text { TO } n \\
& \quad \text { FOR } j=i+1 \text { TO } n \\
& \quad d \leftarrow\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} . \\
& \quad \text { IF }(d<\min) \\
& \quad \min \leftarrow d .
\end{aligned}
$$

Remark. $\Omega\left(n^{2}\right)$ seems inevitable, but this is just an illusion. [see §5.4]

3-SuM

tixa

3-SuM. Given an array of n distinct integers, find three that sum to 0 .
$O\left(n^{3}\right)$ algorithm. Try all triples.
$O\left(n^{2}\right)$ algorithm.

$$
\begin{aligned}
& \text { FOR } i=1 \text { TO } n \\
& \qquad \begin{array}{l}
\text { FOR } j=i+1 \text { TO } n \\
\text { FOR } k=j+1 \text { TO } n \\
\text { IF }\left(a_{i}+a_{j}+a_{k}=0\right) \\
\operatorname{RETURN}\left(a_{i}, a_{j}, a_{k}\right) .
\end{array}
\end{aligned}
$$

[^0]
Polynomial time

Polynomial time. Running time is $O\left(n^{k}\right)$ for some constant $k>0$.

Independent set of size k. Given a graph, find k nodes such that no two are joined by an edge.

```
k is a constant
```

$O\left(n^{k}\right)$ algorithm. Enumerate all subsets of k nodes.

Foreach subset S of k nodes:
Check whether S is an independent set.
IF (S is an independent set) Return S.

- Check whether S is an independent set of size k takes $O\left(k^{2}\right)$ time.
- Number of k-element subsets $=\binom{n}{k}=\frac{n(n-1)(n-2) \times \cdots \times(n-k+1)}{k(k-1)(k-2) \times \cdots \times 1} \leq \frac{n^{k}}{k!}, ~\left(k^{2} n^{k} / k!\right)=O\left(n^{k}\right)$.
- $O\left(k^{2} n^{k} / k!\right)=O\left(n^{k}\right)$.
but not practical

Analysis of algorithms: quiz 4

Which is an equivalent definition of exponential time?

A. $O\left(2^{n}\right)$
B. $\quad O\left(2^{c n}\right)$ for some constant $c>0$.
C. Both A and B.
D. Neither A nor B.

Exponential time

Exponential time. Running time is $O\left(2^{n^{k}}\right)$ for some constant $k>0$.

Independent set. Given a graph, find independent set of max cardinality.
$O\left(n^{2} 2^{n}\right)$ algorithm. Enumerate all subsets.

$$
S^{*} \leftarrow \varnothing
$$

FOREACH subset S of nodes:
Check whether S is an independent set.
IF (S is an independent set and $|S|>\left|S^{*}\right|$)

$$
S^{*} \leftarrow S
$$

RETURN S^{*}.

[^0]: Remark. $\Omega\left(n^{3}\right)$ seems inevitable, but $O\left(n^{2}\right)$ is not hard. [see next slide]

