Def-Use Chains, Use-Def Chains

Topic 9: Static Single Assignment

COS 320

Compiling Techniques

Princeton University
Spring 2018

Prof. David August

Use-Def Chains, Def-Use Chains

e Many optimizations need to find all use-sites for each definition, and all definition-
sites for each use.

— Constant propagation must refer to the definition-site of the unique reaching def-
mition.

— Copy propagation, reverse copy propagation, common sub-expression elimina-
tion...

e Information connecting all use-sites to corresponding definition-sites can be stored
as def-use chains and/or use-def chains.

e def-use chains: for each definition d of r, list of pointers to all uses of » that d
reaches.

e use-def chains: for each use v of r, list of pointers to all definitions of 7 that reach
0.

Static Single Assignment

7: rl=rl+r4 4: 3=r3+1
v v
8: M[r3] =rl 5: goto 3:

/ - - \b‘/,-—f-f"" —
6: 4=10 \ 3:| branch 13 >rl, 6: \

Static Single Assignment (SSA):
e improvement on def-use chains
e cach register has only one definition in program

e for each use u of r, only one definition of r reaches u
rl =5

v

rl=rl+1

/\

r2=rl+1 3=rl-1

Why SSA?

Conversion to SSA Code

Static Single Assignment Advantages:
e Dataflow analysis and code optimization made simpler.

— Variables have only one definition - no ambiguity.
— Dominator information is encoded in the assignments.

e Less space required to represent def-use chains. For each variable, space is propor-
tional to uses * defs.

¢ Eliminates unnecessary relationships:

for i = 1 to N do A[i]
for i = 1 to M do BI[i]

0
1

— No reason why both loops should be forced to use same register to hold index
register.

— SSA renames second i to new register which may lead to better register alloca-
tion/optimization.

(Dynamic Single Assignment is also proposed in the literature.)

Conversion to SSA Form

Easy to convert basic blocks into SSA form:
e Each definition modified to define brand-new register, instead of redefining old one.
e Each use of register modified to use most recently defined version.

rl = r3 + r4

r2 =rl - 1

rl = r4 + r2
r2 = rb5 * 4
rl = rl + r2

Control flow introduces problems.

Conversion to SSA Form

r2=rl+1

/\

r3=1r2+1 r3 =12 -1

=

r4d=13 %4

Use ¢ functions.

e ¢-functions enable the use of 13 to be reached by exactly one definition of r3.
o 13" = o(r3,r3):

—r3"” = r31f control enters from left

— 3" = r3 if control enters from right
e Can implement ¢-functions as set of move operations on each incoming edge.

e In practice, ¢-functions are just used as notation.

Conversion to SSA Form

Conversion to SSA Form

Can insert ¢-functions for each register at each node with more than two predecessors.

rl =5

v

r2=rl+1

/\

3=r2+1

. ———

4 =13 *rl

‘We can do better...

Conversion to SSA Form

Path-Convergence Criterion: Insert a ¢-function for a register r at node z of the flow
graph if ALL of the following are true:

1. There 1s a block x containing a definition of r.

2. There 1s a block y # x containing a definition of r.

3. There is a non-empty path P,. of edges from x to =.

4. There is a non-empty path ;. of edges tfrom y to z.

5. Paths P,. and P, do not have any node in common other than z.

6. The node = does not appear within both F,. and P,. prior to the end, though it may
appear 1n one or the other.

Assume CFG entry node contains implicit definition of each register:
e 1 = actual parameter value
e i = undefined

¢-functions are counted as definitions.

Dominance Frontier

Solve path-convergence iteratively:

WHILE (there are nodes x, y, z satisfying conditions 1-6) &&
(= does not contain a phi-function for) DO:
isert = ¢(r, r, ...,) (one per predecessor) at node z.

e Costly to compute.
e Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...

Definitions:
e 1 sirictly dominates w if = dominates w and = # w.

e dominance frontier of node x 1s set of all nodes w such that = dominates a predeces-
sor of w, but does not strictly dominate w.

Dominance Frontier Dominance Frontier Computation

) ‘ o . - . e Use dominator tree
o Dominance Frontier Criterion: Whenever node = contains definition of some reg-

ister 7, then need to msert ¢-function for » in all nodes z in dominance frontier of o DF[n|: dominance frontier of n
€. ® DFEjyeqn]: successors of nn in CFG that are not strictly dominated by n

oIt 8’””?4 Pominance Frontier: Need to repeatedly apply since ¢-function counts as e DF,;[c]: nodes in dominance frontier of ¢ that are not strictly dominated by ¢’s
a definition. immediate dominator

DF["’] = Dl:locnl[n] U (U(E('hildren[n]DFup[CD
e where children|n] are the nodes whose idom is n.

e Work bottom up in dominator tree.

SSA Example Dominator Analysis

e If d dominates each of the p;, then d dominates n.

Node| DOM][n] IDOM|n] e If d dominates 7, then d dominates each of the p;.
I é o Dom|n| = set of nodes that dominate node .
4: ™
AN 3 e N = set of all nodes.
‘ 4
branch 13 < 100 5 b COIHPUIatIOIl:
5: ‘ branch 12 < 20 | 6: ‘ return r2 | ‘ 7 L. DOIH [‘50} - {50} .
r 8 2.forn € N — {sy} do Domn| = N
T: ‘ 12=rl | 9: ‘ 2=r13 | 9
7 i | 10 3. while (changes to any Dom|n| occur) do
s B=8+1 | 1] B=-3+2 || T
[l 4. forn € N — {s} do

e B 5. Dom[n] = {n} U (ﬂpep.,.ed{n:Dom {pD.
s

—

SSA Example SSA Example

Insert phi-functions:
13=0
_

3:

branch r3 < 100

5:‘ branch 12 < 20 ‘ 6:‘ return 12

7:‘ 2=rl ‘ 9:‘ 12=13
] v

8| B-134l |10 B-13+2
11: -

SSA Example SSA Example

Rename Variables:
1. traverse dominator tree, renaming different definitions of r to r1., 79, 73...

2. rename each regular use of » to most recent definition of r

3. rename ¢-function arguments with each incoming edge’s unique definition 4

branch 13 < 100

T .

5: ‘ branch 12 < 20 ‘ 6 ‘ e 2

7:‘ 12=rl ‘ 9:‘ 2o
. v

8:‘

B3=1r3+1

10: \ B=13+2

11:

Static Single Assignment

SSA Dominance Property

Static Single Assignment Advantages:

e Less space required to represent def-use chains. For each variable, space is propor-
tional to uses * defs.

e Eliminates unnecessary relationships:

for 1 = 1 to N do A[i]
for 1 = 1 to M do BI[i]

0
1

— No reason why both loops should be forced to use same register to hold index
register.

— SSA renames second i to new register which may lead to better register alloca-
tion.

e SSA form make certain optimizations quick and easy — dominance property.

— Variables have only one definition - no ambiguity.

— Dominator information is encoded in the assignments.

SSA Dead Code Elimination

Dominance property of SSA form: definitions dominate uses

o If 7 is it

1

1 argument of ¢-function in node n, then definition of = dominates 7

predecessor of n.

o If = 1s used in non-¢ statement in node 7, then definition of dominates n.

SSA Dead Code Elimination

th

Givend:t = X op y

e t is live at end of node d if there exists path from end of d to use of t that does not
go through definition of t.

e if program not in SSA form, need to perform liveness analysis to determine if t live
atend of d.

e if program is in SSA form:

— cannot be another definition of t

— if there exists use of t, then path from end of d to use exists, since definitions
dominate uses.

+ every use has a unique definition
x t 1s live at end of node d if t 1s used at least once

Algorithm:

WHILE (for each temporary t with no uses &&

statement defining t has no other side-effects) DO

delete statement definition t

1;‘ =5 \
v
2;‘ 2=10 \

!

3: ‘ branc? 13 > 12 ‘

4:‘

v

5:‘

r4=r13+X \

6: r2”:é]7) (1r2°, 12) ‘

v

7| M=

SSA Simple Constant Propagation

SSA Simple Constant Propagation

Givend: t = c¢,cisconstant Givenu: X = £t op b
e if program not in SSA form:
—need to perform reaching definition analysis
—use of t in u may be replaced by c if d reaches u and no other definition of t
reaches
e if program 1s in SSA form:
— d reaches u, since definitions dominate uses, and no other definition of t exists
on path from d to u
— d 1s only definition of t that reaches w, since it 1s the only definition of t.

+ any use of t can be replaced by ¢
* any ¢-function of form v = &(cy, ¢9, ..., ¢,,), Where ¢; = ¢, can be replaced by
v = ¢

SSA Conditional Constant Propagation

SSA Conditional Constant Propagation

1 r1=1
2 2=
3 B=0
I e r2 always has value of 1
4| 127 =#12,12777) ™

N e nodes 9, 10 never executed

137 =#(13,137"7) . 2 :
e “simple” constant propagation algo-

rithms assumes (through reaching defi-

|\ nitions analysis) nodes 9, 10 may be ex-
5: ‘ branch 12° < return 12’ ‘ |
| ecuted.

branch 13’ < 100

|
7:‘ 1277 =13 ‘ - e cannot optimize use of r2 in node 5
] v | since definitions 7 and 9 both reach 5.
T

B 3v-el | 0] 8- |

11| =#127.1277)
1377 = #1377, 1377) //

Much smarter than “simple” constant propagation:
e Does not assume a node can execute until evidence exists that it can be.
e Does not assume register is non-constant unless evidence exists that it is.
Track run-time value of each register r using /attice of values:

e V[r] = L (bottom): compiler has seen no evidence that any assignment to r is ever
executed.

o V[r] = 4: compiler has seen evidence that an assignment r = 4 is executed, but
has seen no evidence that r is ever assigned to another value.

e V[r] = T (top): compiler has seen evidence that r will have, at various times, two
different values, or some value that is not predictable at compile-time.

Also:
e all registers start at bottom of lattice

e new information can only move registers up in lattice

SSA Conditional Constant Propagation SSA Conditional Constant Propagation

Track executability of each node in V: Algorithm: apply following conditions until no more changes occur to E or V' values:

e E|N] = false: compiler has seen no evidence that node N can ever be executed. 1. Given: register r with no definition (formal parameter, uninitialized).

. . . . Action: Vir| =T
e E[N] = true: compiler has seen evidence that node N can be executed. e I

2. Given: executable node B with only one successor C'

Tnitially: Action: F[C] = true
® Vir] = L, for all registers 3. Given: executable assignmentr = x op y, V|[z] = ¢y and V[y| = c2
e Elsg| = true, sg 1s CFG start node Action: V[r| = ciopcy
e E[N| = false, for all CFG nodes N # s 4. Given: executable assignmentr = x op y,V{z]=TorV[y| =T

Action: V[r] =T

5. Given: executable assignment r = ¢(xy, 29, ...,2,,), V]r;] = c1. V]| = c9, and
predecessors i and j are executable
Action: V[r] =T

SSA Conditional Constant Propagation SSA Conditional Constant Propagation

Given I/, I values, program can be optimized as follows:
6. Given: executable assignmentr = M[..] orr = £(..) e if F[B] = false, delete node B form CFG.
Action: V[r] =T '

_) o if V[r] = ¢, replace each use of r by ¢, delete assignment to r.
7. Given: executable assignment r

1s executable
Action: V[r] =T

(w1, 29, ...,), V[z] = T, and predecessor i

8. Given: executable assignment r = ¢(1, 22, ..., 25), V|[r;] = ¢;, and predecessor i
is executable; and for all j # i predecessor j is not executable, or V{z;] = L, or
Vizj] = ¢

J i

Action: V[r] = ¢;

9. Given: executable branch branch x bop y, Ll (else L2), Vx| =T or
Vly] =T
Action: F[L1] = true, E[L2] = true
10. Given: executable branch branch x bop y, Ll (else L2), V]z] =c¢; and
V[l/] = 2
Action: E[L1] = true OR E[L2] = true depending on ¢; bop cs.

SSA Conditional Constant Propagation

SSA Conditional Constant Propagation

Example

1: rl=1
T N | B[N] v |V
- - It 1 | L
masessa T 2 |f 2 |L
4| 127 =#12.12"")
S 3 f 2| L
13’ =#(13,13"") 4 |f 2| L
branch 13’ < 100 5|t 277 L
I 6| f 27 L
5:| branch 12” < 20 ‘ 6:‘ return 12’ | ‘ 71f 3| L
¥ = I 8f 3|1
7:| 2 V:rl ‘ 9:‘ 12777 =13 | Lot 371
s U=l || =g | 10}t 37
s a2
37 //

SSA Conditional Constant Propagation

Example

2 2=l
3 B3=0
4] 2 =#2.127) N

13’ =#(13.13"")

branch r3” < 100

7: 127 =rl
|

8: 137 =13"+1

11127 =527, 12°)
377 =H#137.137") //

SSA Conditional Constant Propagation

Example

2 D=1
3 B3=0
] =1L T~

13’ =#(3,137")

branch 13” < 100

Example

T
3| 3=0 |
v I
4: .
\;\\\
13 =#(13,13""")
branch 13’ < 100
6: ‘ return 1
8| U=+l |
11:
1_3ana:#1_3n~1_3an /,/"
() %

SSA Conditional Constant Propagation

Example

branch r3 < 100

6: ‘ return 1 ‘

